53 research outputs found
Theorems on existence and global dynamics for the Einstein equations
This article is a guide to theorems on existence and global dynamics of
solutions of the Einstein equations. It draws attention to open questions in
the field. The local-in-time Cauchy problem, which is relatively well
understood, is surveyed. Global results for solutions with various types of
symmetry are discussed. A selection of results from Newtonian theory and
special relativity that offer useful comparisons is presented. Treatments of
global results in the case of small data and results on constructing spacetimes
with prescribed singularity structure or late-time asymptotics are given. A
conjectural picture of the asymptotic behaviour of general cosmological
solutions of the Einstein equations is built up. Some miscellaneous topics
connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living
Rev. Rel. 5 (2002)
Theorems on existence and global dynamics for the Einstein equations
This article is a guide to theorems on existence and global dynamics of
solutions of the Einstein equations. It draws attention to open questions in
the field. The local in time Cauchy problem, which is relatively well
understood, is surveyed. Global results for solutions with various types of
symmetry are discussed. A selection of results from Newtonian theory and
special relativity which offer useful comparisons is presented. Treatments of
global results in the case of small data and results on constructing spacetimes
with prescribed singularity structure are given. A conjectural picture of the
asymptotic behaviour of general cosmological solutions of the Einstein
equations is built up. Some miscellaneous topics connected with the main theme
are collected in a separate section.Comment: 54 pages, submitted to Living Reviews in Relativit
Using fish models to investigate the links between microbiome and social behaviour: the next step for translational microbiome research?
Recent research has revealed surprisingly important connections between animals’ microbiome and social behaviour. Social interactions can affect the composition and function of the microbiome; conversely, the microbiome affects social communication by influencing the hosts’ central nervous system and peripheral chemical communication. These discoveries set the stage for novel research focusing on the evolution and physiology of animal social behaviour in relation to microbial transmission strategies. Here, we discuss the emerging roles of teleost fish models and their potential for advancing research fields, linked to sociality and microbial regulation. We argue that fish models, such as the zebrafish (Danio rerio, Cyprinidae), sticklebacks (Gasterosteidae), guppies (Poeciliidae) and cleaner–client dyads (e.g., obligate cleaner fish from the Labridae and Gobiidae families and their visiting clientele), will provide valuable insights into the roles of microbiome in shaping social behaviour and vice versa, while also being of direct relevance to the food and ornamental fish trades. The diversity of fish behaviour warrants more interdisciplinary research, including microbiome studies, which should have a strong ecological (field‐derived) approach, together with laboratory‐based cognitive and neurobiological experimentation. The implications of such integrated approaches may be of translational relevance, opening new avenues for future investigation using fish models
DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection
<p>Abstract</p> <p>Background</p> <p>Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence.</p> <p>Methods</p> <p>A set of 4 genes, including <it>CDH1 </it>(E-cadherin), <it>SFN </it>(stratifin), <it>RARB </it>(retinoic acid receptor, beta) and <it>RASSF1A </it>(Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters.</p> <p>Results</p> <p><it>CDH1 </it>and <it>SFN </it>genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between <it>RARB </it>and <it>RASSF1A </it>methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for <it>RARB </it>methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for <it>RASSF1A </it>gene, respectively, in relation to the control group.</p> <p>Conclusion</p> <p>Indistinct DNA hypermethylation of <it>CDH1 </it>and <it>SFN </it>genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, <it>RARB </it>and <it>RASSF1A </it>gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.</p
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-κB-dependent transcription of IL-1β
While ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) and its enzymatic activity have been shown to be important for reprogramming and differentiation of cells, such as during adipogenesis, their role and mechanism in regulating osteoclastogenesis and bone homeostasis are largely unknown. Here, in cell culture-based RANKL-induced osteoclastogenesis models, we show that silencing of ARTD1 or inhibition of its enzymatic activity enhances osteoclast differentiation and function. As a consequence of ARTD1 silencing or inhibition, the recruitment of p65/RelA to the IL-1β promoter, which is associated with transcriptionally active histone marks, IL-1β expression and inflammasome-dependent secretion of IL-1β are enhanced. This subsequently promotes sustained induction of the transcription factor Nfatc1/A and osteoclastogenesis in an autocrine manner via the IL-1 receptor. In vivo, Artd1-deficient mice display significantly decreased bone mass as a consequence of increased osteoclast differentiation. Accordingly, the expression of osteoclast markers is enhanced in mutant compared to wild-type mice. Together, these results indicate that ARTD1 controls osteoclast development and bone remodelling via its enzymatic activity by modulating the epigenetic marks surrounding the IL-1β promoter and expression of IL-1β and subsequently also Nfatc1/A
ARTD1-induced poly-ADP-ribose formation enhances PPARγ ligand binding and co-factor exchange
PPARγ-dependent gene expression during adipogenesis is facilitated by ADP-ribosyltransferase D-type 1 (ARTD1; PARP1)-catalyzed poly-ADP-ribose (PAR) formation. Adipogenesis is accompanied by a dynamic modulation of the chromatin landscape at PPARγ target genes by ligand-dependent co-factor exchange. However, how endogenous PPARγ ligands, which have a low affinity for the receptor and are present at low levels in the cell, can induce sufficient co-factor exchange is unknown. Moreover, the significance of PAR formation in PPARγ-regulated adipose tissue function is also unknown. Here, we show that inhibition of PAR formation in mice on a high-fat diet reduces weight gain and cell size of adipocytes, as well as PPARγ target gene expression in white adipose tissue. Mechanistically, topoisomerase II activity induces ARTD1 recruitment to PPARγ target genes, and ARTD1 automodification enhances ligand binding to PPARγ, thus promoting sufficient transcriptional co-factor exchange in adipocytes. Thus, ARTD1-mediated PAR formation during adipogenesis is necessary to adequately convey the low signal of endogenous PPARγ ligand to effective gene expression. These results uncover a new regulatory mechanism of ARTD1-induced ADP-ribosylation and highlight its importance for nuclear factor-regulated gene expression
- …