393 research outputs found

    Modulation of NF-κB-dependent gene transcription using programmable DNA minor groove binders

    Get PDF
    Nuclear factor κB (NF-κB) is a transcription factor that regulates various aspects of immune response, cell death, and differentiation as well as cancer. In this study we introduce the Py-Im polyamide 1 that binds preferentially to the sequences 5′-WGGWWW-3′ and 5′GGGWWW-3′. The compound is capable of binding to κB sites and reducing the expression of various NF-κB–driven genes including IL6 and IL8 by qRT-PCR. Chromatin immunoprecipitation experiments demonstrate a reduction of p65 occupancy within the proximal promoters of those genes. Genome-wide expression analysis by RNA-seq compares the DNA-binding polyamide with the well-characterized NF-κB inhibitor PS1145, identifies overlaps and differences in affected gene groups, and shows that both affect comparable numbers of TNF-α–inducible genes. Inhibition of NF-κB DNA binding via direct displacement of the transcription factor is a potential alternative to the existing antagonists

    The Clustering Properties of Lyman-Break Galaxies at Redshift z~3

    Get PDF
    We present a new measure of the angular two-point correlation function of Lyman-break galaxies (LBGs) at z~3, obtained from the variance of galaxy counts in 2-dimensional cells. By avoiding binning of the angular separations, this method is significantly less affected by shot noise than traditional measures, and allows for a more accurate determination of the correlation function. We used a sample of about 1,000 galaxies with R<=25.5 extracted from the survey by Steidel and collaborators, and found the following results. At scales in the range 30<~theta<~100 arcsec, the angular correlation function w(theta) can be accurately described as a power law with slope beta=0.50 +0.25-0.50(1 sigma random)-0.10(systematic), shallower than the measure presented by Giavalisco et al. However, the spatial correlation length, derived by Limber deprojection, is in very good agreement with the previous measures, confirming the strong spatial clustering of these sources. We discuss in detail the effects of both random and systematic errors, in particular of the so called ``integral constraint'' bias, to which we set a lower limit using numerical simulations. This suggests that the current samples do not yet provide a ``fair representation'' of the large-scale distribution of LBGs at z~3. An intriguing result of our analysis is that at angular separations smaller than theta<~30 arcsec the correlation function seems to depart from the power-law fitted at larger scales and become smaller. This feature is detected at the ~90 per cent confidence level and, if real, it can provide information on the number density and spatial distribution of LBGs within their host halos as well as the size and the mass of the halos.Comment: 67 pages, 16 figures, accepted for publication in the Astrophysical Journa

    Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis Infection

    Get PDF
    The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only 'non-immune' genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria

    Impact of Endoscopic Vacuum Therapy with Low Negative Pressure for Esophageal Perforations and Postoperative Anastomotic Esophageal Leaks

    Get PDF
    Introduction: Management of esophageal anastomotic leaks (AL) and esophageal perforations (EP) remains difficult and often requires an interdisciplinary treatment modality. For primary endoscopic management, self-expanding metallic stent (SEMS) placement is often considered first-line therapy. Recently, endoscopic vacuum therapy (EVT) has emerged as an alternative or adjunct for management of these conditions. So far, data for EVT in the upper gastrointestinal-tract is restricted to single centre, non-randomized trials. No studies on optimal negative pressure application during EVT exist. The aim of our study is to describe our centre’s experience with low negative pressure (LNP) EVT for these indications over the past 5-years. Patients and Methods: Between January 2014 and December 2018, 30 patients were endoscopically treated for AL (n = 23) or EP (n = 7). All patients were primarily treated with EVT and LNP between –20 and –50 mm Hg. Additional endoscopic treatment was added when EVT failed. Procedural and peri-procedural data, as well as clinical outcomes including morbidity and mortality, were analysed. Results: Clinical successful endoscopic treatment of EP and AL was achieved in 83.3% (n = 25/30), with 73.3% success using EVT alone (n = 22/30). Mean treatment duration until leak closure was 16.1 days (range 2–58 days). Additional treatment modalities for complete leak resolution was necessary in 10% (n = 3/30), including SEMS placement and fibrin glue injection. Mean hospital stay for patients with EP was shorter with 33.7 days compared to AL with 54.4 days (p = 0.08). Estimated preoperative 10-year overall survival (Charlson comorbidity score) was 39.4% in patients with AL and 59.9% in patients with EP (p = 0.26). A mean of 5.1 EVT changes (range 1–12) was needed in EP and 3.6 changes (range 1–13) in AL to achieve complete closure, switch to other treatment modality, or reach endoscopic failure (p = 0.38). Conclusion: LNP EVT enables effective minimally – invasive endoluminal leak closure from anastomotic esophageal leaks and EP in high-morbid patients. In this study, EVT was combined with other endoscopic treatment options such as SEMS placement or fibrin glue injection in order to achieve leak or perforation closure in the vast majority of patients (83.3%). Low aspiration pressures led to slower but still sufficient clinical results

    Transcription factor site dependencies in human, mouse and rat genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that transcription factors frequently act together to regulate gene expression in eukaryotes. In this paper we describe a computational analysis of transcription factor site dependencies in human, mouse and rat genomes.</p> <p>Results</p> <p>Our approach for quantifying tendencies of transcription factor binding sites to co-occur is based on a binding site scoring function which incorporates dependencies between positions, the use of information about the structural class of each transcription factor (major/minor groove binder), and also considered the possible implications of varying GC content of the sequences. Significant tendencies (dependencies) have been detected by non-parametric statistical methodology (permutation tests). Evaluation of obtained results has been performed in several ways: reports from literature (many of the significant dependencies between transcription factors have previously been confirmed experimentally); dependencies between transcription factors are not biased due to similarities in their DNA-binding sites; the number of dependent transcription factors that belong to the same functional and structural class is significantly higher than would be expected by chance; supporting evidence from GO clustering of targeting genes. Based on dependencies between two transcription factor binding sites (second-order dependencies), it is possible to construct higher-order dependencies (networks). Moreover results about transcription factor binding sites dependencies can be used for prediction of groups of dependent transcription factors on a given promoter sequence. Our results, as well as a scanning tool for predicting groups of dependent transcription factors binding sites are available on the Internet.</p> <p>Conclusion</p> <p>We show that the computational analysis of transcription factor site dependencies is a valuable complement to experimental approaches for discovering transcription regulatory interactions and networks. Scanning promoter sequences with dependent groups of transcription factor binding sites improve the quality of transcription factor predictions.</p

    Novel Roles for Hypoxia and Prostaglandin E2 in the Regulation of IL-8 During Endometrial Repair

    Get PDF
    The endometrium has a remarkable capacity for efficient repair; however, factors involved remain undefined. Premenstrual progesterone withdrawal leads to increased prostaglandin (PG) production and local hypoxia. Here we determined human endometrial expression of interleukin-8 (IL-8) and the roles of PGE2 and hypoxia in its regulation. Endometrial biopsy specimens (n = 51) were collected. Endometrial cells and explants were exposed to 100 nmol/L of PGE2 or 0.5% O2. The endometrial IL-8 concentration peaked during menstruation (P < 0.001) and had a significant proangiogenic effect. IL-8 was increased by PGE2 and hypoxia in secretory but not proliferative explants, which suggests that exposure to progesterone is essential. In vitro progesterone withdrawal induced significant IL-8 up-regulation in proliferative explants primed with progestins, but only in the presence of hypoxia. Epithelial cells treated simultaneously with PGE2 and hypoxia demonstrated synergistic increases in IL-8. Inhibition of HIF-1 by short hairpin RNA abolished hypoxic IL-8 induction, and inhibition of NF-κB by an adenoviral dominant negative inhibitor decreased PGE2-induced IL-8 expression (P > 0.05). Increased menstrual IL-8 is consistent with a role in repair. Progesterone withdrawal, hypoxia, and PGE2 regulate endometrial IL-8 by acting via HIF-1 and NF-κB. Hence, progesterone withdrawal may activate two distinct pathways to initiate endometrial repair

    The landscape of Neandertal ancestry in present-day humans

    Get PDF
    Analyses of Neandertal genomes have revealed that Neandertals have contributed genetic variants to modern humans1–2. The antiquity of Neandertal gene flow into modern humans means that regions that derive from Neandertals in any one human today are usually less than a hundred kilobases in size. However, Neandertal haplotypes are also distinctive enough that several studies have been able to detect Neandertal ancestry at specific loci1,3–8. Here, we have systematically inferred Neandertal haplotypes in the genomes of 1,004 present-day humans12. Regions that harbor a high frequency of Neandertal alleles in modern humans are enriched for genes affecting keratin filaments suggesting that Neandertal alleles may have helped modern humans adapt to non-African environments. Neandertal alleles also continue to shape human biology, as we identify multiple Neandertal-derived alleles that confer risk for disease. We also identify regions of millions of base pairs that are nearly devoid of Neandertal ancestry and enriched in genes, implying selection to remove genetic material derived from Neandertals. Neandertal ancestry is significantly reduced in genes specifically expressed in testis, and there is an approximately 5-fold reduction of Neandertal ancestry on chromosome X, which is known to harbor a disproportionate fraction of male hybrid sterility genes20–22. These results suggest that part of the reduction in Neandertal ancestry near genes is due to Neandertal alleles that reduced fertility in males when moved to a modern human genetic background

    Differential effects of selenium and knock-down of glutathione peroxidases on TNFα and flagellin inflammatory responses in gut epithelial cells

    Get PDF
    Selenium (Se) is essential for human health. Despite evidence that Se intake affects inflammatory responses, the mechanisms by which Se and the selenoproteins modulate inflammatory signalling, especially in the gut, are not yet defined. The aim of this work was to assess effects of altered Se supply and knock-down of individual selenoproteins on NF-κB activation in gut epithelial cells. Caco-2 cells were stably transfected with gene constructs expressing luciferase linked either to three upstream NF-κB response elements and a TATA box or only a TATA box. TNFα and flagellin activated NF-κB-dependent luciferase activity and increased IL-8 expression. Se depletion decreased expression of glutathione peroxidase1 (GPX1) and selenoproteins H and W and increased TNFα-stimulated luciferase activity, endogenous IL-8 expression and reactive oxygen species (ROS) production. These effects were not mimicked by independent knock-down of either GPX1, selenoprotein H or W; indeed, GPX1 knock-down lowered TNFα-induced NF-κB activation and did not affect ROS levels. GPX4 knock-down decreased NF-κB activation by flagellin but not by TNFα. We hypothesise that Se depletion alters the pattern of expression of multiple selenoproteins that in turn increases ROS and modulates NF-κB activation in epithelial cells, but that the effect of GPX1 knock-down is ROS-independent

    Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay

    Get PDF
    Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-β enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.National Human Genome Research Institute (U.S.) (grant R01HG004037)National Science Foundation (U.S.) ((NSF) grant PHY-0957573)National Science Foundation (U.S.) (NSF grant PHY-1022140)Broad Institut
    corecore