15 research outputs found

    Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptional control of embryonic stem (ES) cell pluripotency has been a subject of intense study. Transcriptional regulators including Oct4 (Oct3/4 index), Sox2 and Nanog are fundamental for maintaining the undifferentiated state. However, the ES cell transcriptome is not limited to their targets, and exhibits considerable complexity when assayed with microarray, MPSS, cDNA/EST sequencing, and SAGE technologies. To identify novel genes associated with pluripotency, we globally searched for ES transcripts not corresponding to known genes, validated their sequences, determined their expression profiles, and employed RNAi to test their function.</p> <p>Results</p> <p>Gene Identification Signature (GIS) analysis, a SAGE derivative distinguished by paired 5' and 3' transcript end tags, identified 153 candidate novel transcriptional units (TUs) distinct from known genes in a mouse E14 ES mRNA library. We focused on 16 TUs free of artefacts and mapping discrepancies, five of which were validated by RTPCR product sequencing. Two of the TUs were revealed by annotation to represent novel protein-coding genes: a PRY-domain cluster member and a KRAB-domain zinc finger. The other three TUs represented intergenic splicing events involving adjacent, functionally unrelated protein-coding genes transcribed in the same orientation, with one event potentially encoding a fusion protein containing domains from both component genes (Clk2 and Scamp3). Expression profiling using embryonic samples and adult tissue panels confirmed that three of the TUs were unique to or most highly expressed in ES cells. Expression levels of all five TUs dropped dramatically during three distinct chemically induced differentiation treatments of ES cells in culture. However, siRNA knockdowns of the TUs did not alter mRNA levels of pluripotency or differentiation markers, and did not affect cell morphology.</p> <p>Conclusion</p> <p>Transcriptome libraries retain considerable potential for novel gene discovery despite massive recent cDNA and EST sequencing efforts; cDNA and EST evidence for these ES cell TUs had been limited or absent. RTPCR and full-length sequencing remain essential in resolving the bottleneck between numerous candidate novel transcripts inferred from high-throughput sequencing and the small fraction that can be validated. RNAi results indicate that, despite their strong association with pluripotency, these five transcriptomic novelties may not be required for maintaining it.</p

    Complex Loci in Human and Mouse Genomes

    Get PDF
    Mammalian genomes harbor a larger than expected number of complex loci, in which multiple genes are coupled by shared transcribed regions in antisense orientation and/or by bidirectional core promoters. To determine the incidence, functional significance, and evolutionary context of mammalian complex loci, we identified and characterized 5,248 cis–antisense pairs, 1,638 bidirectional promoters, and 1,153 chains of multiple cis–antisense and/or bidirectionally promoted pairs from 36,606 mouse transcriptional units (TUs), along with 6,141 cis–antisense pairs, 2,113 bidirectional promoters, and 1,480 chains from 42,887 human TUs. In both human and mouse, 25% of TUs resided in cis–antisense pairs, only 17% of which were conserved between the two organisms, indicating frequent species specificity of antisense gene arrangements. A sampling approach indicated that over 40% of all TUs might actually be in cis–antisense pairs, and that only a minority of these arrangements are likely to be conserved between human and mouse. Bidirectional promoters were characterized by variable transcriptional start sites and an identifiable midpoint at which overall sequence composition changed strand and the direction of transcriptional initiation switched. In microarray data covering a wide range of mouse tissues, genes in cis–antisense and bidirectionally promoted arrangement showed a higher probability of being coordinately expressed than random pairs of genes. In a case study on homeotic loci, we observed extensive transcription of nonconserved sequences on the noncoding strand, implying that the presence rather than the sequence of these transcripts is of functional importance. Complex loci are ubiquitous, host numerous nonconserved gene structures and lineage-specific exonification events, and may have a cis-regulatory impact on the member genes

    REST Regulates Distinct Transcriptional Networks in Embryonic and Neural Stem Cells

    Get PDF
    The maintenance of pluripotency and specification of cellular lineages during embryonic development are controlled by transcriptional regulatory networks, which coordinate specific sets of genes through both activation and repression. The transcriptional repressor RE1-silencing transcription factor (REST) plays important but distinct regulatory roles in embryonic (ESC) and neural (NSC) stem cells. We investigated how these distinct biological roles are effected at a genomic level. We present integrated, comparative genome- and transcriptome-wide analyses of transcriptional networks governed by REST in mouse ESC and NSC. The REST recruitment profile has dual components: a developmentally independent core that is common to ESC, NSC, and differentiated cells; and a large, ESC-specific set of target genes. In ESC, the REST regulatory network is highly integrated into that of pluripotency factors Oct4-Sox2-Nanog. We propose that an extensive, pluripotency-specific recruitment profile lends REST a key role in the maintenance of the ESC phenotype

    Zfp206, Oct4, and Sox2 Are Integrated Components of a Transcriptional Regulatory Network in Embryonic Stem Cells*

    No full text
    Zfp206 (recently renamed Zscan10) encodes a zinc finger transcription factor specifically expressed in human and mouse embryonic stem cells (ESC). It has been shown that Zfp206 is required to maintain ESC in an undifferentiated, pluripotent state. Presented here are data showing that Zfp206 works together with two other transcription factors, Oct4 and Sox2, which are also essential regulators of ESC pluripotency. We show that Zfp206 binds to the Oct4 promoter and directly regulates Oct4 expression. Genome-wide mapping of Zfp206-binding sites in ESC identifies more than 3000 target genes, many of which encode transcription factors that are also targeted for regulation by Oct4 and Sox2. In addition, we show that Zfp206 physically interacts with both Oct4 and Sox2. These data demonstrate that Zfp206 is a key component of the core transcriptional regulatory network and together with Oct4 and Sox2 regulates differentiation of ESC

    TU Pairs Searched For

    No full text
    <p>We defined a <i>cis–</i>antisense pair as two oppositely transcribed TUs that share at least 20 bp of exon sequence, a non-exon-overlapping antisense pair as two oppositely transcribed TUs that overlap by at least 20 bp, but not within exons, and a bidirectionally promoted pair as two divergently transcribed TUs that overlap by less than 20 bp and are less than 1,000 bp apart.</p

    Landmark Sequence Composition of Bidirectional Promoters

    No full text
    <p>We defined the midpoint of a bidirectional promoter as the midpoint between the most 5′ TSS in each of the two divergently oriented TCs defining the bidirectional promoter. Sequences corresponding to the region spanned by the TCs were extracted from the genomic plus strand. All bidirectional promoter sequences were aligned at their midpoint and the logo created with WebLogo [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020047#pgen-0020047-b049" target="_blank">49</a>]. The logo displays the four nucleotides ranked by their frequency at each position, so that more common nucleotides appear above less common ones. The charts above the logo show the distribution of CAGE tag 5′-ends mapping to the plus strand (upper chart) and minus strand (lower chart) around bidirectional promoter midpoints. The CAGE tag distribution was computed as the sum of tag counts at each position over all bidirectional promoters. The peak of nearly 5,000 tags on the plus strand is due to the <i>Rps2</i> gene, which appears to be most highly expressed from a single TSS.</p

    Estimating the Extent and Conservation of Antisense Transcription

    No full text
    <div><p>(A and B) Estimation of proportion of TUs involved in <i>cis–</i>antisense pairs. Open circles indicate the fraction of all human TUs on the plus strand (A) and all mouse TUs on the plus strand (B) that were found to be involved in <i>cis–</i>antisense pairs when the minus-strand TUs were recomputed starting from random transcript sequence samples of different sizes. Filled circles represent the full datasets based on all available transcript sequences. The saturation curves (see Equation 1) indicated by the lines fit almost perfectly to the sampled data. Fitted human and mouse saturation curves approach 0.45 and 0.43, respectively, as the number of transcript sequences increases, indicating that more than 40% of all TUs might be involved in <i>cis–</i>antisense pairs. Similar estimates were obtained by other sampling approaches (<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020047#pgen-0020047-sg003" target="_blank">Figure S3</a>).</p> <p>(C) Estimation of the proportion of human <i>cis–</i>antisense pairs that are conserved in mouse. Open circles indicate the proportion of human <i>cis–</i>antisense pairs found to be conserved in mouse when the full human dataset was compared to mouse datasets recomputed from random mouse transcript sequence samples of different sizes. The same type of saturation curve as in (A) was fitted to the data. Here, a model with <i>c</i> = 1 (i.e., hyperbolic saturation) was preferable as it provided an equally good fit while being simpler. The fitted curve approaches 0.25 as the number of mappings grows, indicating that about 25% of human <i>cis–</i>antisense pairs are conserved in mouse.</p></div
    corecore