31 research outputs found

    Intrinsic incompatibilities evolving as a by-product of divergent ecological selection : Considering them in empirical studies on divergence with gene flow

    Get PDF
    The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions.Peer reviewe

    Multi-locus interactions and the build-up of reproductive isolation

    Get PDF
    All genes interact with other genes, and their additive effects and epistatic interactions affect an organism's phenotype and fitness. Recent theoretical and empirical work has advanced our understanding of the role of multi-locus interactions in speciation. However, relating different models to one another and to empirical observations is challenging. This review focuses on multi-locus interactions that lead to reproductive isolation (RI) through reduced hybrid fitness. We first review theoretical approaches and show how recent work incorporating a mechanistic understanding of multi-locus interactions recapitulates earlier models, but also makes novel predictions concerning the build-up of RI. These include high variance in the build-up rate of RI among taxa, the emergence of strong incompatibilities producing localized barriers to introgression, and an effect of population size on the build-up of RI. We then review recent experimental approaches to detect multi-locus interactions underlying RI using genomic data. We argue that future studies would benefit from overlapping methods like ancestry disequilibrium scans, genome scans of differentiation and analyses of hybrid gene expression. Finally, we highlight a need for further overlap between theoretical and empirical work, and approaches that predict what kind of patterns multi-locus interactions resulting in incompatibilities will leave in genome-wide polymorphism data. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.Peer reviewe

    Widespread hybridization within mound-building wood ants in Southern Finland results in cytonuclear mismatches and potential for sex-specific hybrid breakdown.

    Get PDF
    Hybridization and gene flow between diverging lineages is increasingly recognized as a common evolutionary process and its consequences can vary from hybrid breakdown to adaptive introgression. We have previously found a population of wood ant hybrids between Formica aquilonia and F. polyctena that shows antagonistic effects of hybridization: females with introgressed alleles show hybrid vigour, whereas males with the same alleles show hybrid breakdown. Here we investigate whether hybridization is a general phenomenon in this species pair, and analyze 647 worker samples from 16 localities in Finland using microsatellite markers and a 1200 bp mitochondrial sequence. Our results show that 27 sampled nests contained parental-like gene pools (six putative F. polyctena and 21 putative F. aquilonia) and all remaining nests (69), from nine localities, contained hybrids of varying degrees. Patterns of genetic variation suggest these hybrids arise from several hybridization events or, instead, have backcrossed to the parental gene pools to varying extents. In contrast to expectations, the mitochondrial haplotypes of the parental species were not randomly distributed among the hybrids. Instead, nests that were closer to parental-like F. aquilonia for nuclear markers preferentially had F. polyctena's mitochondria and vice versa. This systematic pattern suggests there may be underlying selection favoring cytonuclear mismatch and hybridization. We also found a new hybrid locality with strong genetic differences between the sexes similar to those predicted under antagonistic selection on male and female hybrids. Further studies are needed to determine the selective forces that act on male and female genomes in these newly discovered hybrids. This article is protected by copyright. All rights reserved

    Instability of natural selection at candidate barrier loci underlying speciation in wood ants

    Get PDF
    doi: 10.1111/mec.15606Speciation underlies the generation of novel biodiversity. Yet, there is much to learn about how natural selection shapes genomes during speciation. Selection is assumed to act against gene flow at barrier loci, promoting reproductive isolation. However, evidence for gene flow and selection is often indirect and we know very little about the temporal stability of barrier loci. Here we utilize haplodiploidy to identify candidate male barrier loci in hybrids between two wood ant species. As ant males are haploid, they are expected to reveal recessive barrier loci, which can be masked in diploid females if heterozygous. We then test for barrier stability in a sample collected 10 years later and use survival analysis to provide a direct measure of natural selection acting on candidate male barrier loci. We find multiple candidate male barrier loci scattered throughout the genome. Surprisingly, a proportion of them are not stable after 10 years, natural selection apparently switching from acting against to favouring introgression in the later sample. Instability of the barrier effect and natural selection for introgressed alleles could be due to environment-dependent selection, emphasizing the need to consider temporal variation in the strength of natural selection and the stability of the barrier effect at putative barrier loci in future speciation work.Peer reviewe

    Genetic modification of the ant Lasius niger using CRISPR-Cas9 technology

    No full text
    Abstract CRISPR-Cas9 has become one of the most prominent gene editing tools available and it has been utilized in various organisms from bacteria to fungi, plants, and animals. In this study, we developed a CRISPR-Cas9 protocol for the black garden ant Lasius niger, a common and easily available study species for lab and field experiments. To create indel mutations using CRISPR-Cas9 in L. niger, we targeted three different locations in a well-studied eye pigmentation gene cinnabar, generating several mutations that disrupt the ommochrome biosynthesis pathway and result in the lack of the pigment and therefore, abnormal eye coloration in adult workers. We also developed a protocol to collect L. niger eggs, inject them with CRISPR-Cas9 construct, and rear the eggs into mature adult workers with the assistance of nursing workers. We demonstrated for the first time in L. niger that CRISPR-Cas9 is an excellent tool to create targeted mutations for this species. Our protocol can be referred to when developing similar studies for other species of ants and eusocial insects

    Semipermeable species boundaries create opportunities for gene flow and adaptive potential

    No full text
    International audienceHybridisation and gene flow can have both deleterious and adaptive consequences for natural populations and species. To better understand the extent of hybridisation in nature and the balance between its beneficial and deleterious outcomes in a changing environment, information on naturally hybridising nonmodel organisms is needed. This requires the characterisation of the structure and extent of natural hybrid zones. Here, we study natural populations of five keystone mound-building wood ant species in the Formica rufa group across Finland. No genomic studies across the species group exist, and the extent of hybridisation and genomic differentiation in sympatry is unknown. Combining genome-wide and morphological data, we demonstrate more extensive hybridisation than was previously detected between all five species in Finland. Specifically, we reveal a mosaic hybrid zone between Formica aquilonia, F. rufa and F. polyctena, comprising further generation hybrid populations. Despite this, we find that F. rufa, F. aquilonia, F. lugubris and F. pratensis form distinct gene pools in Finland. We also find that hybrids occupy warmer microhabitats than the nonadmixed populations of cold-adapted F. aquilonia, and suggest that warm winters and springs, in particular, may benefit hybrids over F. aquilonia, the most abundant F. rufa group species in Finland. In summary, our results indicate that extensive hybridisation may create adaptive potential that could promote wood ant persistence in a changing climate. Additionally, they highlight the potentially significant ecological and evolutionary consequences of extensive mosaic hybrid zones, within which independent hybrid populations face an array of ecological and intrinsic selection pressures

    Semipermeable species boundaries create opportunities for gene flow and adaptive potential

    No full text
    Abstract Hybridisation and gene flow can have both deleterious and adaptive consequences for natural populations and species. To better understand the extent of hybridisation in nature and the balance between its beneficial and deleterious outcomes in a changing environment, information on naturally hybridising nonmodel organisms is needed. This requires the characterisation of the structure and extent of natural hybrid zones. Here, we study natural populations of five keystone mound-building wood ant species in the Formica rufa group across Finland. No genomic studies across the species group exist, and the extent of hybridisation and genomic differentiation in sympatry is unknown. Combining genome-wide and morphological data, we demonstrate more extensive hybridisation than was previously detected between all five species in Finland. Specifically, we reveal a mosaic hybrid zone between Formica aquilonia, F. rufa and F. polyctena, comprising further generation hybrid populations. Despite this, we find that F. rufa, F. aquilonia, F. lugubris and F. pratensis form distinct gene pools in Finland. We also find that hybrids occupy warmer microhabitats than the nonadmixed populations of cold-adapted F. aquilonia, and suggest that warm winters and springs, in particular, may benefit hybrids over F. aquilonia, the most abundant F. rufa group species in Finland. In summary, our results indicate that extensive hybridisation may create adaptive potential that could promote wood ant persistence in a changing climate. Additionally, they highlight the potentially significant ecological and evolutionary consequences of extensive mosaic hybrid zones, within which independent hybrid populations face an array of ecological and intrinsic selection pressures

    Whole-genome analysis of multiple wood ant population pairs supports similar speciation histories, but different degrees of gene flow, across their European ranges

    No full text
    Abstract The application of demographic history modelling and inference to the study of divergence between species has become a cornerstone of speciation genomics. Speciation histories are usually reconstructed by analysing single populations from each species, assuming that the inferred population history represents the actual speciation history. However, this assumption may not be met when species diverge with gene flow, for example, when secondary contact may be confined to specific geographic regions. Here, we tested whether divergence histories inferred from heterospecific populations may vary depending on their geographic locations, using the two wood ant species Formica polyctena and F. aquilonia. We performed whole-genome resequencing of 20 individuals sampled in multiple locations across the European ranges of both species. Then, we reconstructed the histories of distinct heterospecific population pairs using a coalescent-based approach. Our analyses always supported a scenario of divergence with gene flow, suggesting that divergence started in the Pleistocene (c. 500 kya) and occurred with continuous asymmetrical gene flow from F. aquilonia to F. polyctena until a recent time, when migration became negligible (2–19 kya). However, we found support for contemporary gene flow in a sympatric pair from Finland, where the species hybridise, but no signature of recent bidirectional gene flow elsewhere. Overall, our results suggest that divergence histories reconstructed from a few individuals may be applicable at the species level. Nonetheless, the geographical context of populations chosen to represent their species should be taken into account, as it may affect estimates of migration rates between species when gene flow is spatially heterogeneous
    corecore