40 research outputs found

    The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803.

    Get PDF
    Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu)

    Biodesalination: A Case Study for Applications of Photosynthetic Bacteria in Water Treatment  

    Full text link
    Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance

    Sll1717 Affects the Redox State of the Plastoquinone Pool by Modulating Quinol Oxidase Activity in Thylakoids

    No full text
    A Synechocystis sp. strain PCC 6803 mutant lacking CtaI, a main subunit of cytochrome c oxidase, is not capable of growing at light intensities below 5 μmol photons m(−2) s(−1), presumably due to an overreduced plastoquinone pool in the thylakoid membrane. Upon selection for growth at light intensities below 5 μmol photons m(−2) s(−1), a secondary mutant was generated that retained the CtaI deletion and had fully assembled photosystem II complexes; in this secondary mutant (pseudorevertant), oxygen evolution and respiratory activities were similar to those in the wild type. Functional complementation of the original CtaI-less strain to low-light tolerance by transformation with restriction fragments of genomic DNA of the pseudorevertant and subsequent mapping of the pseudoreversion site showed that the point mutation led to a Ser186Cys substitution in Sll1717, a protein of as-yet-unknown function and with a predicted ATP/GTP-binding domain. This mutation caused a decrease in the plastoquinone pool reduction level of thylakoids compared to that observed for the wild type. Based on a variety of experimental evidence, the most plausible mechanism to cause this effect is an activation of plastoquinol oxidation in thylakoids by the quinol oxidase CydAB that occurs without upregulation of the corresponding gene and that may be caused by an increased CydAB activity in thylakoids, conceivably due to altered CydAB sorting between cytoplasmic and thylakoid membranes. Sll1717 appears to be unique to Synechocystis sp. strain PCC 6803 and has a close homologue encoded in the genome of this organism. The transcript level of sll1717 is low, which suggests that the corresponding protein is regulatory rather than structural

    Regulation by FurC in Anabaena links the oxidative stress response to photosynthetic metabolism

    Get PDF
    The FUR (Ferric Uptake Regulator) family in Anabaena sp. PCC 7120 consists of three paralogs named FurA (Fur), FurB (Zur) and FurC (PerR). furC seems to be an essential gene in the filamentous nitrogen-fixing strain Anabaena sp. PCC 7120, suggesting that it plays a fundamental role in this organism. In order to better understand the functions of FurC in Anabaena, the phenotype of a derivative strain that overexpresses this regulator (EB2770FurC) has been characterized. The furC-overexpressing variant presented alterations in growth rate, morphology and ultrastructure, as well as higher sensitivity to peroxide than Anabaena sp. PCC 7120. Interestingly, the overexpression of furC led to reduced photosynthetic O2 evolution, increased respiratory activity, and had a significant influence in the composition and efficiency of both photosystems. Comparative transcriptional analyses, together with electrophoretic mobility shift assays allowed the identification of different genes directly controlled by FurC, and involved in processes not previously related to PerR proteins, such as the cell division gene ftsZ and the major thylakoid membrane protease ftsH. The rise in the transcription of ftsH in EB2770FurC cells correlated with reduced levels of the D1 protein, which is involved in the PSII repair cycle. Deregulation of the oxidative stress response in EB2770FurC cells led to the identification of novel FurC targets involved in the response to H2O2 through different mechanisms. These results, together with the effect of furC overexpression on the composition, stability and efficiency of the photosynthetic machinery of Anabaena, disclose novel links between PerR proteins, cell division and photosynthesis in filamentous cyanobacteria.This work was supported by grants [E35_17R] from Gobierno de Aragón and [BFU2012-31458/FEDER and BFU2016-77671-P/FEDER] from MINECOPeer reviewe
    corecore