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1
2 ABSTRACT

3

4 The FUR (Ferric Uptake Regulator) family in Anabaena sp. PCC7120 consists of three paralogs 

5 named FurA (Fur), FurB (Zur) and FurC (PerR). furC seems to be an essential gene in the 

6 filamentous nitrogen-fixing strain Anabaena sp. PCC7120, suggesting that it plays a fundamental 

7 role in this organism. In order to better understand the functions of FurC in Anabaena, the 

8 phenotype of a derivative strain that overexpresses this regulator (EB2770FurC) has been 

9 characterized. The furC-overexpressing variant presented alterations in growth rate, morphology 

10 and ultrastructure, as well as higher sensitivity to peroxide than Anabaena sp. PCC7120. 

11 Interestingly, the overexpression of furC led to reduced photosynthetic O2 evolution, increased 

12 respiratory activity, and had a significant influence in the composition and efficiency of both 

13 photosystems. Comparative transcriptional analyses, together with electrophoretic mobility shift 

14 assays allowed the identification of different genes directly controlled by FurC, and involved in 

15 processes not previously related to PerR proteins, such as the cell division gene ftsZ and the major 

16 thylakoid membrane protease ftsH. The rise in the transcription of ftsH in EB2770FurC cells 

17 correlated with reduced levels of the D1 protein, which is involved in the PSII repair cycle. 

18 Deregulation of the oxidative stress response in EB2770FurC cells led to the identification of novel 

19 FurC targets involved in the response to H2O2 through different mechanisms. These results, 

20 together with the effect of furC overexpression on the composition, stability and efficiency of the 

21 photosynthetic machinery of Anabaena, disclose novel links between PerR proteins, cell division 

22 and photosynthesis in filamentous cyanobacteria.  

23  

24 Key words: Cell division, cyanobacteria, ftsH, FurC (PerR), peroxiredoxins, photosynthesis.

25
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1 Introduction

2

3 Cyanobacteria contain a unique combination of light-harvesting complexes composed by 

4 membrane-bound antenna present in both photosystems and by phycobilisomes bound to the 

5 surface of the thylakoid membrane that transfer light energy to chlorophyll a (Chl a). Some strains, 

6 such as Anabaena sp. PCC7120, can reduce atmospheric nitrogen into ammonia, supplying fixed 

7 nitrogen to plants. Because of its photosynthetic metabolism, cyanobacteria have high transition 

8 metal demands. In addition to Mg2+ present in Chl a, Mn2+ and Ca2+ are essential for PSII 

9 stabilization and light-induced oxygen evolution; Zn2+ is required at the active site of carbonic 

10 anhydrase, and the cyanobacterial photosynthetic apparatus is composed of a number of iron-rich 

11 membrane protein supercomplexes (Liu 2016; Cavet et al. 2003). Thus, among transition metals, 

12 iron is the major cofactor needed not only for photosynthesis but for other cyanobacterial electron 

13 transport pathways involved in respiration, oxidative phosphorylation and nitrate assimilation. This 

14 makes cyanobacterial iron quota about 10-times higher than that of heterotrophic organisms 

15 (Shcolnick and Keren 2006). In the case of diazothropic cyanobacteria, nitrogen fixation is even 

16 more iron-demanding, since nitrogenase itself contains about 40 atoms of iron (Rees et al. 2005). In 

17 a paradox, iron-sulfur clusters are the primary targets of reactive oxygen species (ROS) generated 

18 as by-products of the photosynthetic metabolism in the Mehler reaction and, to a lesser extent, in 

19 PSII when the light-driven oxidation of water is not completed. In addition to iron-containing 

20 proteins, the D1 polypeptide in the core complex of PSII is the main target of photooxidative 

21 damage (Yamamoto 2001). Generation of ROS increases under environmental stress conditions, a 

22 common situation in cyanobacterial habitats, leading to the overreduction of the intersystem 

23 components of the photosynthetic electron transport chain and slowing down biosynthetic routes 

24 (Apel and Hirt 2004). As a result, to cope with oxidative stress, cyanobacteria have developed a 

25 battery of antioxidant enzymes that include Mn and Fe superoxide dismutases, catalases and 

26 peroxidases, among others (Latifi et al. 2009). Therefore, in Anabaena, photosynthesis, respiration, 

27 nitrogen metabolism and the oxidative stress response are tightly related to metal homeostasis and 

28 are coordinately regulated mainly by FUR (Ferric Uptake Regulator) proteins (Gonzalez et al. 2010; 

29 Gonzalez et al. 2016; Lopez-Gomollon et al. 2007; Sein-Echaluce et al. 2015).
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1 The FUR family in Anabaena is composed of three members: FurA (Fur), FurB (Zur) and FurC 

2 (PerR) (Hernandez et al. 2004). FurA and FurB are redox-sensing regulators, since their interaction 

3 with their respective metal co-factors depends on the redox environment (Hernandez et al. 2006; 

4 Sein-Echaluce et al. 2018). FurA is essential, and it works as a global regulator that modulates 

5 around 33% of the Anabaena sp. PCC7120 genome, including a large number of genes involved in 

6 iron metabolism, as well as a major groups of genes related to photosynthesis, respiration, nitrogen 

7 metabolism, heterocyst differentiation and the oxidative stress response (Gonzalez et al. 2016). 

8 FurB controls zinc homeostasis in Anabaena sp. PCC7120 together with a set of key genes 

9 involved in the oxidative stress protection (Napolitano et al. 2012; Sein-Echaluce et al. 2015). FurC 

10 is the most unknown member of Fur proteins of Anabaena PCC7120. It was previously reported to 

11 be able to modulate the binding activity of the other FUR paralogs to their own promoters 

12 (Hernandez et al. 2004). In addition, it has been proposed that FurC corresponds to the PerR 

13 orthologue described in many Gram-positive bacteria (Yingping et al. 2014). PerR (Peroxide 

14 Response) proteins repress genes involved in oxidative stress response and sense H2O2 by Fe-

15 catalyzed histidine oxidation that leads to the release of the regulator from their targets (Lee and 

16 Helmann 2006). In the unicellular, non-diazotrophic cyanobacterium Synechocystis PCC 6803, 

17 PerR is encoded by slr1738, and its disruption allowed the identification of a putative regulon that 

18 includes about 37 genes mainly involved in the oxidative stress response, transport across 

19 membranes, iron metabolism and CO2 concentration (Kobayashi et al. 2004; Li et al. 2004). 

20 Conversely, previous attempts to inactivate the furC gene in Anabaena sp. PCC7120 were 

21 unsuccessful (Yingping et al. 2014) and our unpublished results, suggesting that either FurC might 

22 have an extra function in nitrogen-fixing cyanobacteria or it could control a wider set of genes in 

23 Anabaena PCC7120 than in unicellular cyanobacteria. Therefore, with the aim to better understand 

24 the role of FurC in Anabaena sp. PCC7120, a furC-overexpressing strain was produced, and its 

25 phenotype has been characterized. Constitutive expression of furC leads to a pleiotropic phenotype 

26 with observable changes in cell shape, increased sensitivity to oxidative stress and remodelling of 

27 the photosynthetic machinery. Furthermore, a set of novel direct targets of FurC involved in cell-

28 division, PSII quality control and the oxidative stress response have been identified. Our results 

29 unveil that the expression levels of FurC in Anabaena are related to the control of cell-growth 

30 parameters as well as to the composition and efficiency of the photosynthetic machinery. 
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1   

2 Results

3

4 FurC overexpression from the copper-inducible petE promoter

5 A derivative strain of Anabaena sp. PCC 7120 showing a high level of expression of furC was 

6 generated using the shuttle vector pAM2770 (Lee et al. 2003) as described previously (González et 

7 al. 2010). The resulting vector, pAM2770furC, contained an extra copy of the wild-type furC gene 

8 located downstream of the copper inducible petE (plastocyanin) promoter (Buikema et al. 2001). 

9 Transcription levels of furC and translation of the protein were verified by real-time RT-PCR and 

10 Western blot respectively (Fig. 1). Since supplementation of BG-11 with additional copper does not 

11 result in appreciable increase in the amount of the recombinant protein produced using this system 

12 (González et al. 2010), standard BG-11 was used in further analyses.

13

14 Anabaena cells overexpressing furC exhibit altered growth and morphology

15 Photoautotrophic growth of the wild-type and EB2770FurC strains in BG-11 medium was compared 

16 by following the cell number measuring optical density at 750 nm and cell count over the course of 

17 20 days. The number of cells in an average filament was similar in both Anabaena strains, ranging 

18 between 30 and 40 cells. Thus, the change of the absorbance at 750 nm as well as cell counting 

19 indicated that EB2770FurC growth rate was markedly higher than that of the wild type strain (Fig. 2, 

20 panels A and B). Cells of Anabaena sp. PCC7120 showed a growth rate of 5.54 ± 0.2 d-1 whereas 

21 the EB2770FurC variant doubled at 4.78 ± 0.5 d-1 (Table 1). 

22 The morphology of EB2770FurC cells was analysed by using Scanning Electron Microscopy (SEM) 

23 in comparison with cells of the wild type. At low magnification (x3000) the microphotographs 

24 showed that filaments of the EB2770FurC strain are composed by rod-shaped cells whereas cells 

25 of the wild type are elliptically-shaped (Figs. 3A and 3B). Moreover, filaments of EB2770FurC 

26 exhibited cells more homogeneous in shape and size, compared to the wild type strain (Figs. 3A 

27 and 3B). The size of the filaments was similar in both strains. On the other hand, higher 

28 magnification (x7000) microphotographs revealed that surface roughness exhibited by the wild type 

29 decreased considerably in the EB2770FurC strain (Figs. 3C and 3D). 
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1 Changes in the ultrastructure of EB2770FurC cells were analysed by Transmission Electron 

2 Microscopy (TEM). TEM microphotographs showed differences between both strains in thylakoid 

3 arrangement (Figs. 3E and 3F). In Anabaena sp. PCC7120, thylakoids were homogeneously 

4 distributed in cell cytoplasm (Fig. 3E) whereas in the EB2770FurC strain, they were located close to 

5 cell membrane at the periphery of the cell (Fig. 3F). A smaller diameter of EB2770FurC cells (Fig. 

6 3F), compared to the wild type (Fig. 3E) was also observed. Furthermore, the EB2770FurC variant 

7 exhibited a peptidoglycan layer with higher density and a smoother surface than the wild type.  

8 Finally, the septa between EB2770FurC cells seemed to be wider than those in the wild type 

9 Anabaena sp. PCC7120 (Figs. 3C, 3D, 3G and 3H). Pectic acids or mucopolysaccharides forming 

10 the mucilaginous sheath of Anabaena appeared to be differently distributed on the septum 

11 boundaries (Figs. 3G and 3H).

12

13 ftsZ and ftsH genes are controlled by FurC in Anabaena PCC7120

14 In the light of these results, we investigated the potential involvement of FurC in the modulation of 

15 some of the genes related to morphology and growth processes such as the the mreBCD operon, 

16 encoding the bacterial actins MreB, MreC and MreD (Hu et al. 2007), responsible for changes in cell 

17 morphology, as well as the cell division genes ftsZ and ftsH (all4776). The binding of FurC to the 

18 promoter regions of these genes was tested by electrophoretic mobility shift assays (EMSA). Figure 

19 4A shows that FurC bound specifically to the promoter regions of both ftsZ and ftsH genes whereas 

20 it did not bind to the promoter of the mreBCD operon. Afterwards, the influence of FurC 

21 overexpression in the transcriptional levels of ftsZ and ftsH was investigated. Relative changes in 

22 mRNA levels were determined by real-time RT-PCR. Figure 4B shows that transcription of both ftsH 

23 and ftsZ genes was up-regulated in EB2270FurC strain (1.62- and 1.87-fold respectively), indicating 

24 that FurC could work as a transcriptional activator of both genes.

25

26 Anabaena cells overexpressing furC contain reduced levels of D1 

27 Since ftsH codes for a protease involved in the degradation of the D1 polypeptide, we sought to 

28 investigate in what extent the activation of ftsH by FurC would influence the levels of D1. Western 

29 blot analyses of the Anabaena sp. PCC7120 wild type and the EB2770FurC strain confirmed that 

30 the total amount of D1 was reduced in EB2770FurC cells. Figure 5 shows that both strains present 
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1 a 32 kDa form corresponding to native D1 and the processed peptide at 14 kDa. Furthermore, a 

2 faint band of higher molecular weight that could correspond either to a D1/D2 heterodimer 

3 (Yamamoto 2001) or to D1 aggregates (Kale et al. 2017) can be observed only in both biological 

4 replicates of the wild type Anabaena sp. PCC7120.  

5

6 Overexpression of furC leads to modifications in total pigment content of Anabaena sp. PCC7120

7 Whole-cell spectra of Anabaena sp. PCC7120 and the EB2770FurC strain evidenced that the 

8 amount of phycobiliproteins (maximum of absorbance at ~625 nm) and Chl a (maximum of 

9 absorbance at ~665 nm) was lower in EB2770FurC cells than in the wild type (Fig. 6A). With the 

10 aim to better evaluate the effect of an excess of FurC, contents of phycobiliproteins, Chl a, 

11 carotenoid and total protein were determined in both strains at the exponential and the stationary 

12 phases of growth. These data were normalized by dividing the amount of pigments by the number 

13 of cells present in the samples. The levels of Chl a, phycobiliproteins as well as total protein were 

14 significantly lower in the EB2770FurC strain, both in exponential and stationary phases (Figs. 6B, 

15 6C, 6D). However, the carotenoid content decreased in EB2770FurC cells in the exponential phase 

16 but increased in the stationary phase, compared to the wild type (Fig. 6E). 

17

18 Levels of FurC affect transcription of phycobilisome genes 

19 The lower content of phycobilisomes observed in the EB2770FurC variant could be due to a 

20 decrease in the expression of phycobilisome proteins. Phycobilisomes of Anabaena sp. PCC7120 

21 are composed of an allophycocyanin core and several rods made of stacked disks of 

22 phycocyanin and allophycocyanin connected through hydrophobic linker peptides (Singh et al. 

23 2015). In order to get a deeper knowledge about the influence of furC overexpression in the 

24 photosynthetic machinery, transcription of the apcA α-subunit of allophycocyanin (alr0021), the 

25 cpcB β-subunit of phycocyanin (alr0528), as well as apcC, apcE, cpcG, and pecC linkers was 

26 analyzed by real-time RT-PCR in the EB2770FurC strain relative to the wild type (Fig. 6F). The 

27 transcription levels of the apcA, cpcB and cpcG genes decreased 2.47-fold, 2.8-fold and 2.1-fold, 

28 respectively, in the EB2770FurC strain. In contrast, the expression of apcC, apcE and pecC 

29 remained unaltered. In order to assess whether the apcA, cpcB and cpcG genes were directly 

30 controlled by FurC, EMSA assays were conducted. FurC did not bind to any of the promoter regions 
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1 of these genes (not shown), indicating that downregulation of apcA, cpcB and cpcG in the furC-

2 overexpressing EB2770FurC strain is not controlled directly by FurC.   

3

4 furC-overexpressing cells display reduced photosynthetic O2 evolution and increased respiratory 

5 activity 

6 Net photosynthesis and respiratory activities of EB2770FurC and Anabaena sp. PCC7120 were 

7 measured in cells at the exponential phase of growth by using an oxygen electrode. The oxygen-

8 evolving activity of the EB2770FurC strain was around 30% of that of the wild type (Table 1). The 

9 decrease in photosynthetic activity was in agreement with the fact that the pigment content 

10 (phycobiliproteins and Chl a) as well as the amount of the PSII protein D1 was notably reduced in 

11 the EB2770FurC strain. Nevertheless, the respiration rate was increased in the EB2770FurC variant 

12 compared to the wild type (Table 1). 

13

14 Overexpression of furC affects the efficiency of photosystems 

15 To monitor the consequences of furC-overexpression on the content of both photosystems, as well 

16 as their interactions with the light-harvesting systems, analyses of the fluorescence spectra at 77K 

17 were carried out. Efficiency of energy transfer in both photosystems to Chl a was tested with 440 

18 nm excitation light. Fluorescence emission at 680-695 nm is higher in the EB2770FurC strain than 

19 in Anabaena sp. PCC7120 (Fig. 7A), indicating that the efficiency of energy transfer in PSII is lower 

20 in EB2770FurC cells. A similar picture was observed when cells where excited at 580 nm (Fig. 7B). 

21 The higher peaks at 695 and 730 nm (corresponding to the emission of the antennae of PSII and 

22 Chl a associated with PSI, respectively) in the spectrum of EB2770FurC indicated a lower efficiency 

23 of energy transfer to both photosystems in the furC-ovexpressing strain, which is in good agreement 

24 with the lower photosynthetic oxygen evolution observed in this strain, compared to the wild type.

25

26 PSII displays higher sensitivity to the lack of calcium in the EB2770FurC strain

27 The influence of the overexpression of FurC in the stability of PSII was investigated under different 

28 stress conditions. A successive transfer of cyanobacterial cultures to the Ca2+-less BG-11 medium 

29 caused a gradual depletion of Ca2+ in the cells, and produced a substantial decrease in the Fv/Fm 

30 ratio in the wild type Anabaena sp. PCC7120 cells over time (Fig. 8). This is a reflection of the 

Page 9 of 38 Plant & Cell Physiology



For Peer Review

10

1 increased stress caused by the lack of Ca2+, and the decline of the photochemical quenching 

2 capacity of PSII. FurC overexpression produced an important decline in the Fv/Fm ratio in the 

3 mutant cells, compared to the wild type, upon the decrease of Ca2+ concentration (Fig. 8). This has 

4 not been observed in the cultures subjected to other stress factors, namely high temperature and 

5 chloride deficiency (data not shown). Hence, it appears that the furC overexpression has a Ca2+-

6 mediated effect on the functional stability of PSII.

7

8 FurC differentially regulates oxidative stress response genes in the presence of H2O2

9 The effect of increasing concentrations of H2O2 in cultures of Anabaena sp. PCC7120 and the 

10 EB2770 furC-overexpressing variant is shown in Fig. 9. The tolerance of both strains to this oxidant 

11 remained similar at concentrations up to 1 mM. However, the presence of higher concentrations of 

12 peroxide led to a considerable decrease in the tolerance of EB2270FurC after 24 h of incubation 

13 compared to the Anabaena wild type (Fig. 9A). At 48 h the differences in the tolerance of the wild 

14 type and the EB2270FurC strain to peroxide were clearly observed at 3 mM. However, under higher 

15 concentrations of H2O2, namely 7 and 10 mM, both strains were highly affected (Fig. 9B).

16 On the basis of the differences in the tolerance to H2O2 observed in the EB2770FurC strain, 

17 quantification of the relative transcription of a variety of genes involved in oxidative stress in 

18 presence and absence of 250 µM H2O2 was determined by real-time RT-PCR. The selected genes 

19 included peroxiredoxins (prxA/alr4641, ahpC/all1541, alr4404, CGT3/alr2375, CGT1 and alr2503), 

20 sulfiredoxin (srxA), the Mn-catalase alr0998 (catA) and superoxide dismutase sodA (Fig. 10A). In 

21 addition, the ability of FurC to bind specifically to the promoter regions of these genes was tested. 

22 Apart from the previously reported direct targets, prxA and srxA (Yingping et al. 2014), we found 

23 that FurC was able to bind to the promoter regions of the three peroxiredoxin genes ahpC (all1541), 

24 CGT3 and alr4404 although with different affinities (Fig. 10B).  In contrast, FurC did not bind to the 

25 other studied promoters (data not shown). Quantification of the relative transcription of these genes 

26 in presence and absence of 250 µM H2O2 unveiled that the genes directly controlled by FurC, 

27 including prxA, srxA, ahpC and CGT3 (Fig. 10A), were upregulated in the presence of oxidative 

28 stress, while their transcription levels under normal conditions were similar to these in the wild type 

29 (srxA and CGT3) or even downregulated (prxA and ahpC) (Fig. 10A). In contrast, all4404 showed a 

30 reversed pattern of expression in EB2770FurC, displaying an increment in transcription in normal 
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1 conditions that decreased in the presence of H2O2, suggesting that in this case FurC could be 

2 acting as an activator. The peroxiredoxins CGT1 and alr2503 were upregulated around 1.7-fold in 

3 EB2770FurC cells under both normal and oxidative stress conditions. Since no specific binding was 

4 observed with these promoters by EMSA, we can assume that there might be an indirect regulation 

5 by FurC which is not dependent on the oxidation state of the cell. Transcription of the superoxide 

6 dismutase sodA increased under normal conditions around 2.5-fold, while under oxidative stress 

7 remained similar to the level determined in Anabaena sp. PCC7120. In the case of the catalase 

8 catA, no transcriptional change was observed under normal conditions, but when incubating with 

9 H2O2, mRNA levels of catA dramatically decreased to around 4-fold. Furthermore, EMSA analyses 

10 showed that FurC did not bind to sodA and catA promoters (not shown). 

11

12 Discussion

13

14 Most FUR proteins play a key role in the physiology of cyanobacteria and alterations in their 

15 expression affect multiple essential metabolic and signaling processes. Since previous attempts to 

16 inactivate furC in Anabaena sp. PCC7120 have failed, the production of a furC-overexpressing 

17 strain of Anabaena is a valuable tool for understanding the functions of this regulator in filamentous, 

18 nitrogen-fixing cyanobacteria. Our results indicate that the overexpression of furC leads to 

19 remarkable morphological and physiological changes in Anabaena sp. PCC7120 cells. Considering 

20 that FurC corresponds to the PerR orthologue, it is feasible that furC overexpression will affect the 

21 global redox status of the cell. Therefore, several redox-regulated processes are likely to be altered 

22 in the EB2770FurC strain. Although some of the changes observed could be associated to 

23 pleiotropic effects, many others are caused by direct or indirect miss-regulation by FurC of genes 

24 involved in cell division, photosynthesis or the response to oxidative stress. 

25 Some noticeable features associated to furC overexpression are a faster growth rate and the 

26 different cell shape of EB2770FurC cells, compared to the wild type Anabaena sp. PCC7120. Some 

27 of these differences could be related to the direct activation of ftsZ and ftsH by FurC. The tubulin 

28 homolog FtsZ is present in most bacteria and chloroplasts and it plays an important role in cell 

29 division (Osteryoung et al. 1998). In Anabaena cells FtsZ accumulates at the growing edge of the 

30 division septa to form the characteristic prokaryotic Z-ring structure (Klint et al. 2007). Depletion of 
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1 FtsZ in an Anabaena sp. PCC7120 variant caused reduced and asymmetric cell division, as well as 

2 filaments with altered morphology (Corrales-Guerrero et al. 2018). These results suggest that the 

3 activation of ftsZ transcription by FurC observed in EB2770FurC cells could be related with the 

4 differences in the morphology observed in this strain. In addition, since light and other redox-related 

5 signals, such as the presence of reactive oxygen species (ROS) have a deep impact on 

6 cyanobacterial morphology, adaptive responses of the EB2770FurC strain to such factors could not 

7 be ruled out (Montgomery 2015). 

8 FtsH is the major metalloprotease in photosynthetic membranes and is essential to maintain 

9 functional protein homeostasis by removing photodamaged and misfolded proteins (Kato and 

10 Sakamoto 2018). Proteolysis is required for cell division and the reorganization of novel septa and 

11 photosynthetic membranes. Since EB2770FurC cells divide faster than the wild type, the increase in 

12 ftsH transcription would correlate well with the physiological needs of the cells. 

13 Furthermore, in situations of photooxidation FtsH is involved in the selective degradation of 

14 damaged D1 polypeptide as part of a PSII repair cycle, remodeling photosystem II and cytochrome 

15 b6f complexes (Kato and Sakamoto 2018; Malnoe et al. 2014). In Synechocystis, ftsH plays a 

16 crucial role in maintaining the activity of both photosystems, and is necessary to prevent chronic 

17 photoinhibition (Bečková et al. 2017; Mann et al. 2000; Silva et al. 2003). Disruption of ftsH 

18 (slr0228) caused a 60% of reduction of functional PSI and changes in the phycocyanin/Chl a ratio 

19 (Mann et al. 2000). Despite these important functions of FtsH, little is known about the factors 

20 involved in the regulation of its expression. Bečková et al, recently described that in Synechocystis 

21 the Psb29 subunit physically interacts with FtsH and this interaction results in the accumulation of 

22 FtsH protein (Bečková  et al. 2017). In the present work we describe that FurC is a transcriptional 

23 activator of ftsH unveiling an interesting link between an oxidative stress sensor protein (FurC) and 

24 the maintenance of a suitable photosynthetic electron chain. Our results evidence that, under 

25 standard growth conditions, photosynthesis is affected in the EB2770FurC strain. PSII will probably 

26 be more affected by ROS in EB2770FurC cells than in Anabaena sp. PCC7120 due to the 

27 misregulation of pivotal antioxidant genes in the furC-overexpressing strain. Consequently, 

28 EB2770FurC cells will require a faster PSII turnover involving D1 cleavage by FtsH, which is in 

29 good agreement with the enhanced expression of ftsH and the lower content of D1 in these cells 

30 compared to the wild type. This is also supported by several features of the furC-overexpressing 
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1 strain, such as the decrease in energy transfer in PSII observed in the fluorescence spectra at 77K, 

2 the reduced capacity of PSII to the photochemical quenching and its higher sensitivity to Ca2+. 

3 Furthermore, under regular growth conditions, EB2770FurC cells exhibit a higher Fv/Fm ratio, 

4 compared to the wild type that may reflect a difference in the redox state of the plastoquinone pool 

5 in the two strains caused by the marked difference in their respiratory rate. Another contributing 

6 factor may be a lower molar ratio of phycocyanin to Chl a that was reported to have an inverse 

7 correlation with the Fv/Fm values (Misumi et al. 2016). Accordingly, the EB2770FurC strain had 

8 markedly lower phycobiliprotein content and exhibited a lower ratio of phycobiliprotein to Chl a 

9 content per cell compared to the wild type.  

10 The present study shows that the EB2770FurC strain is more sensitive to H2O2 than the wild type 

11 Anabaena sp. PCC7120. This could be related to the de-regulation in EB2770FurC cells of key 

12 genes involved in the defense against oxidative stress. It is likely that decreasing photosynthetic 

13 oxygen evolution, together with a higher dark respiratory activity, would relieve oxygen tension in 

14 EB2770FurC cells. This increase in respiration could be also a compensatory effect in order to 

15 balance the ATP level of the cell.    

16 Moreover, our results show that FurC plays a major role in the regulation of the detoxification 

17 mechanisms of Anabaena in response to H2O2. It has been proposed that peroxiredoxins, a type of 

18 peroxidases, could be the main proteins involved in detoxification of H2O2 in Anabaena (Pascual et 

19 al. 2011). In this work we have shown that four peroxiredoxins alr2375 (CGT3), all1541 (ahpC), 

20 alr4404 and alr4641 (prxA) are under the direct control of FurC that regulates their expression in 

21 response to H2O2. A different regulatory mechanism seems to operate for peroxiredoxins CGT1 and 

22 alr2503, whose transcription is enhanced in the EB2770FurC variant regardless of the presence or 

23 absence of peroxide, suggesting that, if any, the role of FurC in their regulation should be indirect 

24 since it does not bind to CGT1 and alr2503 promoters. Conversely, transcription of sodA and cat is 

25 downregulated in EB2770FurC cells in response to H2O2, though FurC is not directly acting on 

26 these promoters according to EMSA. Our results suggest that FurC indirectly regulates the 

27 expression of sodA and cat genes, but also that this regulation is dependent on the redox state of 

28 the cell since their transcription is affected by the presence of H2O2. Thus, the different responses to 

29 peroxide observed in the EB2770FurC strain, compared to the wild type Anabaena sp. PCC7120 

30 indicate that FurC mainly acts as a repressor using different mechanisms.
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1 In summary, our results allowed the identification of ahpC, CGT3, alr4404, ftsZ and ftsH as novel 

2 direct targets of FurC in Anabaena sp. PCC7120. Furthermore, evidences of the in vivo direct 

3 activation by a PerR/FurC protein of genes involved in the PSII repair cycle, namely ftsH, are 

4 presented, unveiling a novel strategy of a photosynthetic organism to link the quality control of the 

5 photosynthetic machinery to the redox status of the cell. 

6

7 Materials and methods

8

9 Construction of a FurC-overexpression strain from Anabaena sp. PCC7120 

10 Plasmid pAM2770FurC containing the furC gene downstream the copper-inducible petE 

11 (plastocyanin) promoter (Buikema and Haselkorn 2001) was constructed from the shuttle vector 

12 pAM2770 (Lee et al. 2003). Chromosomal DNA was extracted from Anabaena sp. PCC7120 (Cai 

13 and Wolk 1990) and used as a template to amplify furC gene using primers FurC-pAM2770_up and 

14 FurC-pAM2770_dw (Supplemental Table S1). The amplification product was digested with the 

15 enzymes BamHI and NdeI and cloned into the same restriction sites of the vector pAM2770. The 

16 construction was sequenced to ensure that amplification and cloning procedures were successful 

17 (Service of Sequencing and Functional Genomics, University of Zaragoza).  Plasmid pAM2770FurC 

18 was transferred to Anabaena sp. PCC 7120 by triparental mating (Elhai et al. 1997). Conjugation 

19 was carried out using the E.coli conjugant donor strain ED8654, carrying the plasmid pRL443, and 

20 the E.coli conjugal helper strain CPB1893 which contains the plasmid pRL623. Selected colonies 

21 were plated in BG-11 plates supplemented with 50 µg/ml neomycin. furC overexpression was 

22 estimated by real-time RT-PCR and Western blot. The clone that showed higher levels of FurC was 

23 selected and named EB2770FurC.  

24

25 Cell counting

26 The process was carried out using three biological replicates as follows. In each growth phase, an 

27 appropriate dilution was applied to the culture in order to achieve a suitable counting of Anabaena 

28 cells. The number of cells present in Anabaena filaments was determined in the two top and the two 

29 bottom squares of a Neubauer chamber. After counting, the average number of cells in the larger 
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1 square was calculated. Finally, the cell density per ml was obtained as the average of cells counted 

2 in the large square x 104 x dilution factor.

3

4 Growth measurement and pigment content determinations 

5 Photoautotrophic growth of three independent cultures of wild-type Anabaena sp. strain PCC7120 

6 and its derivative furC-overexpressing strain EB2770FurC was measured spectrophotometrically 

7 using a SPECORD® PLUS Analytik Jena spectrophotometer. The optical density was recorded at 

8 750 nm for 20 days and total cell count was determined using a hemocytometer. Doubling time was 

9 calculated as previously described (Stein 1973). Pigment content and total protein were quantified 

10 at exponential and stationary phases of growth. Chl a (Mackinney 1941), phycobiliproteins (Glazer 

11 1976) and carotenoids (Davies 1976) were quantified as previously described. Total protein content 

12 was determined by using the BCA™ Protein Assay kit (Thermo Fisher Scientific). 

13

14 Microscopy

15 Scanning electron microscopic examinations of Anabaena sp. filaments were carried out with a 

16 JEOL JSM 6360-LV microscope. Cells were harvested at early exponential phase of growth and 

17 fixed with 2.5% glutaraldehyde in phosphate buffer (66 mM Na2HPO4, 66 mM KH2PO4, pH 6.8) for 2

18  h at room temperature washed three times for 5 min in phosphate buffer, fixed with 2% OsO4 for 1 

19 h and washed three times for 5 min in distilled water and processed by Service of Electronic 

20 Microscopy of Biological Systems (University of Zaragoza). Samples for Transmission Electron 

21 Microscopy were fixed following a different method. Cells were harvested at early exponential 

22 phase of growth and washed twice with Sorensen buffer 0.1M (Na2HPO4 2 H2O, NaH2PO4 H2O, pH 

23 7.2). Pellets were soaked in 2% agar in 0.1M Sorensen buffer, homogenized and allowed to 

24 polymerize at room temperature. The agar samples were cut into cubes of approximately 1 mm in 

25 edge size and fixed for 3 h by immersion with 3.1% glutaraldehyde in 0.1 M Sorensen buffer. 

26 Sample processing and transmission electron microscopic examinations were performed in the 

27 Research Interdepartmental Service of the Autonomous University of Madrid, Madrid, Spain. 

28

29 Tolerance to oxidative stress induced by H2O2 
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1 Cells were exposed to increasing concentrations of H2O2 for 24 and 48 h. Cultures at late log phase 

2 of growth (O.D. at 750 nm around 1.0) were adjusted to an optical density of 0.5 with fresh BG-11 

3 medium, and 200 μl of culture were displayed into each well of a microtiter plate. H2O2 was added 

4 to the wells at a final concentration of 0-10 mM. The plates were incubated for 24 h in darkness at 

5 room temperature. The results were documented by photography, and chlorosis was estimated by 

6 reading the absorbance at 620 nm with a Multiskan EX microplate photometer (Thermo Fischer 

7 Scientific).

8

9 Determination of net photosynthesis and dark respiration rates 

10 Net photosynthesis rate of exponentially growing cells of Anabaena sp. PCC7120 and EB2270FurC 

11 strains were measured at room temperature with a Clark-type oxygen electrode model Chlorolab 2 

12 (Hansatech). Net photosynthesis defined as true photosynthesis minus photorespiration and dark 

13 respiration (Wohlfahrt and Gu 2015), was determined by measuring O2 increase during 3 min 

14 illuminating cell suspensions with white light at saturating intensity (400 µE m-2 s-1). Dark respiration 

15 was estimated from O2 uptake by cells incubated in the dark. Both, net photosynthesis and dark 

16 respiration rates were expressed as nmol O2 per million cells-1 s-1. Data were analyzed with O2 View 

17 (Hansatech) software. 

18

19 Fluorescence emission measurements at 77 K

20 Fluorescence emission spectra were obtained at 77 K by exciting the Anabaena sp. PCC7120 and 

21 EB2770FurC samples with a 1000W ORIEL 66187 tungsten halogen lamp and a double 0.22 m 

22 SPEX 1680B monochromator. Samples of cyanobacterial cultures at exponential phase of growth 

23 were set to a Chl a concentration of 10 μg ml–1. Excitation was carried out either at 440 nm to 

24 monitor energy transfer from PSs to Chl a, or at 580 nm to check energy transfer from 

25 phycobilisomes to Chl a. Spectra were normalized to identical concentration of Chl a and 

26 phycobiliproteins, respectively. Fluorescence emission was detected through a 0.5 JARREL-ASH 

27 monochromator with a Hamamatsu R928 photomultiplier tube. All the measurements were 

28 corrected from the system response. The spectral line widths (FWHM) for the excitation and the 

29 emission were 3.6 and 1.7 nm, respectively. 

30
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1 PSII response to stress by calcium depletion

2 Liquid cyanobacterial cultures were grown on Ca2+-less BG-11 medium, in which CaCl2 was 

3 replaced by the NaCl in 1:2 molar ratio. The final concentration of Ca2+ in this medium was the 

4 same as in the doubly distilled water that was used for these experiments. The medium for the 

5 EB2770FurC strain was supplemented with 50 µg/ml neomycin. Upon subculturing, cells at mid-

6 exponential phase (OD at 730 nm = 0.4-0.6) were diluted to OD at 730 nm = 0.03 to start the 

7 successive culture. The initial cyanobacterial culture (0) was grown in a standard BG-11 medium. 

8 From this culture a series of 6 successive subcultures were grown on the Ca2+-less BG-11 medium.

9 Fluorescence measurements were recorded with a Walz fluorometer.  Samples of cyanobacterial 

10 cultures at exponential growth phase were prepared with a Chl a concentration of 5 μg ml–1. Fv/Fm 

11 ratio was determined according to (Genty et al. 1989). The data were analyzed with FIP software 

12 (QA-Data, Turku, Finland).

13

14 RNA extraction

15 Three independent cultures of each strain (Anabaena PCC7120 and EB2770FurC) were grown at 

16 28ºC in BG-11 medium at 180 rpm with 50 μmol photons.m2.seg-1 Cells were harvested at mid-

17 exponential phase and pellets were frozen at -70ºC until the analyses of the expression of selected 

18 genes. Similar experiments were conducted in presence and absence of 250 μM H2O2 to study 

19 differential expression under oxidative stress conditions. In this experiment, cells were harvested 

20 after 1 hour of H2O2 treatment. RNA was purified from each pellet following a method adapted from 

21 (Olmedo-Verd et al. 2005). The absence of DNA in the RNA samples was checked by real-time 

22 PCR, using oligonucleotides for the housekeeping gene rnpB (Vioque 1992). RNA was quantified 

23 spectrophotometrically using a SPECORD® PLUS Analytik Jena spectrophotometer.

24

25 Real time RT-PCR

26  2 µg of total RNA were reverse-transcribed using SuperScript retrotranscriptase (Invitrogen) 

27 following the manufacturer’s conditions. Real-time PCR was performed using the ViiA™ 7 Real-

28 Time PCR System (Applied Biosystems). The specific primers are included in Supplemental Table 

29 S1 of Supplementary Material. Each reaction was set up mixing 12.5 µl of SYBR Green PCR 

30 Master Mix with 0.4 μl of 25 µM primer mixture and 10 ng of cDNA template in a final volume of 30 

Page 17 of 38 Plant & Cell Physiology



For Peer Review

18

1 µl. The extension of PCR products was performed at 60°C. The relative mRNA levels of the target 

2 genes were normalized to the housekeeping gene rnpB (Vioque 1992). Relative quantification was 

3 performed according to the comparative Ct method (ΔΔCt Method) (Livak and Schmittgen 2001). 

4 The minimum fold-change threshold was set up to ± 1.5 fold.

5

6 Overexpression and purification of recombinant FurC (PerR)

7 FurC was overexpressed in E.coli BL21 (DE3) Gold cells as previously described (Hernandez et al. 

8 2004). FurC purification method was adapted from the procedure used for the purification of B. 

9 subtilis apo-PerR-Zn (Traore et al. 2006) including the following modifications. Cells overexpressing 

10 FurC were harvested and resuspended in ice-cold 50 mM Tris–HCl  7.5, 10 mM EDTA 

11 supplemented with ¼ tablet of Complete™, EDTA-free protease Inhibitor cocktail (Roche) prior to 

12 10 cycles of sonication. Cell lysate was centrifuged for 20 min at 20,000 x g. The resulting 

13 supernatant was filtered through 0.45 m-pore-size (Millipore) and loaded onto a DEAE-cellulose 

14 column. Protein was eluted using a linear gradient of 0-0.5 M NaCl in 50 mM Tris–HCl pH 7.5, 10 

15 mM EDTA. Fractions containing FurC were dialyzed in Tris 50 mM pH 7.5. For the experiments that 

16 required higher purity of FurC, fractions were subjected to a second purification step on a heparin 

17 column and eluted with a linear gradient of 0-0.5 M NaCl in Tris 50 mM pH 7.5. Finally, the protein 

18 was stored at -20ºC in 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 5% glycerol. 

19

20 Electrophoresis and immunoblotting

21 Two biological replicates of Anabaena sp. PCC7120 and EB2770FurC strains were cultured and 

22 harvested at the exponential phase of growth (OD750nm = 0.7-0.9). In the case of D1 

23 immunodetection, crude extracts were prepared by sonication followed by centrifugation at 12000 

24 rpm in a microcentrifuge Eppendorf 5427R to remove cell debris. Total protein content was 

25 determined by using a bicinchoninic acid protein assay reagent (Pierce). Then, 30 μg of total protein 

26 belonging to the different strains, were loaded and separated onto a SDS/17% polyacrylamide gel. 

27 For immunoblotting, the proteins were transferred onto a PVDF membrane (0.45 mm pore size 

28 transfer membrane from Waters) as previously described (Towbing et al 1979). Chicken polyclonal 

29 antibodies against D1 protein (Agrisera) were used at 1:4000 dilution and finally rabbit anti-chicken 
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1 polyclonal antibodies conjugated to horseradish peroxidase were applied at 1:10000 dilution. The 

2 blot was visualized by using a Bio-Rad ChemidocTM imaging system.

3 For immunodetection of FurC, 80 μl of each culture of Anabaena sp. PCC7120 and EB2770FurC  

4 were boiled with 20 μl of sample buffer 5X (Tris-HCl 300 mM pH 6.8, glycerol 50%, SDS 5%, β-

5 mercaptoethanol 10%, 0.01% bromophenol blue) for 5 min at 95ºC. Afterwards extracts were 

6 centrifuged for 30 min at maximum speed in a microcentrifuge Eppendorf 5427R. Then 20 μl of 

7 each supernatant were loaded onto a SDS/17% polyacrylamide gel and electrophoresis was 

8 conducted. Proteins were transferred onto a PVDF membrane, probed with rabbit polyclonal 

9 antibodies against FurC (1:1000 dilution) and visualized using goat anti-rabbit polyclonal antibodies 

10 conjugated to horseradish peroxidase (1:10000 dilution). The blot image was obtained with a Bio-

11 Rad ChemidocTM imaging system.

12  

13 Electrophoretic Mobility Shift Assays (EMSA)

14 Gene promoters used in the analyses consisted of a 150–350 bp DNA fragment upstream of ATG 

15 and were obtained by PCR, using the Anabaena sp. PCC 7120 genome as template. Primers used 

16 in PCR amplifications are included in Supplemental Table S1. EMSAs were performed as follows, 

17 purified FurC supplemented with 100 µM of MnCl2 was mixed in a final volume of 20 µl with 50 ng of 

18 DNA promoters. Reactions were performed in a binding buffer containing 10 mM Bis Tris/HCl, pH 

19 7.5, 40 mM KCl, 0.1 mg/ml BSA, 1 mM DTT (1,4-dithiothreitol) and 5% (v/v) glycerol. Specifity of 

20 FurC binding to the studied promoters was checked including an internal fragment of the pkn22 

21 gene (ifpkn22) as a non-specific competitor DNA in all reactions, while binding of FurC to the 

22 promoter region of the prxA gene was used as a positive control. The resulting mixture was 

23 incubated for 30 min at room temperature and loaded into non-denaturing 6% polyacrylamide gels. 

24 Gels were stained with SYBR ® Safe (Invitrogen) and visualized in a GelDoc 2000 device (Bio-

25 Rad). 

26
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1 Tables

2

3
4 Figure legends

5

6 Figure 1. Levels of transcription and translation of furC in the EB2770FurC strain compared to the 

7 wild type Anabaena sp. PCC7120. A. Real-time RT-PCR analyses showing the abundance of furC 

8 mRNA in the EB2770FurC strain relative to that observed in Anabaena sp. PCC7120. Values are 

9 expressed as fold change; standard deviation corresponding to three biological replicates is 

10 indicated. B. Detection of FurC protein in crude extracts of Anabaena sp. PCC7120 and 

11 EB2770FurC by Western blotting. Two biological replicates of Anabaena sp. PCC7120 called WT1 

12 and WT2 as well as two biological replicates of EB2770FurC strain named EB1 and EB2 are 

13 shown. The location of FurC is indicated with an arrow.

14

15 Figure 2. Growth of the furC-overexpressing strain EB2770FurC in comparison with Anabaena sp. 

16 PCC 7120, expressed as both optical density (A) and number of cells per ml (B). Values are the 

Table 1.  Physiological parameters of liquid cultures of Anabaena sp. strains PCC7120 and 

EB2770FurC.

PCC7120 EB2770FurC

Growth rate (d-1) 5.5 ± 0.2 4.8 ± 0.5

Net photosynthesis 21.05 ± 3.08 b 7.5 ± 2.19 b

Dark O2 respiration 0.97 ± 0.26 b 1.97 ± 0.15 b

µg Phycobiliproteins/cell 4.87x10-5 ± 0.3x10-5 2.15x10-5 ± 0.8x10-5

µg Chl a /cell 6.5x10-7 ± 0.8x10-7 3.61x10-7 ± 0.03x10-7

Phycobiliproteins / Chl a 74.92 59.55

a Anabaena strains were grown photoautotrophically in BG-11 medium to early-log phase.

b Values are means of three independent determinations ± SD, expressed as pmol O2 million cells -1.
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1 averages of three independent experiments; SDs are represented by vertical bars. Please note that 

2 in some instances the error is smaller than the symbols used.

3

4 Figure 3. Overexpression of furC induced morphological and ultrastructural changes in Anabaena 

5 sp., as shown in photomicrographs of the wild-type strain Anabaena sp. PCC 7120 (A, C, E and G) 

6 and the furC-overexpressing strain EB2770FurC (B, D, F and H) taken at the exponential phase of 

7 growth. Scanning electron microscopy (images A, B, C and D) and transmission electron 

8 microscopy (E, F, G and H). Septum boundaries in transmission electron microscopy images G and 

9 H are indicated with arrows. The photomicrograph of each strain is representative of at least 10 

10 different images from two biological replicates. Bars=1 μm.

11

12 Figure 4. Study of the regulation by FurC of mre actins and the cell division genes ftsZ and ftsH. (A) 

13 Electrophoretic mobility shift assays testing the ability of FurC to bind in vitro the promoter regions 

14 of mreBCD, ftsZ and ftsH. Binding of FurC to prxA promoter (left panel) was included as a positive 

15 control. DNA fragments free or mixed with the indicated concentrations of recombinant FurC (nM) 

16 were separated by 6 % PAGE. An internal fragment of the gene pkn22 was used as non-specific 

17 competitor DNA. (B) Relative transcription of ftsZ and ftsH genes determined by real-time RT-PCR 

18 in EB2770FurC cells with respect to Anabaena sp. PCC7120. Values are expressed as fold change 

19 and correspond to the average of three independent assays; the standard deviation is indicated. 

20

21 Figure 5. Detection of the D1 protein in crude extracts of Anabaena sp. PCC7120 and EB2770FurC 

22 by Western blotting. Results were generated with two biological replicates of Anabaena sp. 

23 PCC7120 called WT1 and WT2 as well as two biological replicates of the EB2770FurC strain 

24 named EB1 and EB2. Bands corresponding to different forms of the D1 protein observed in the 

25 membrane are indicated with arrows.

26

27 Figure 6. UV-visible spectra of whole Anabaena sp. PCC7120 (dark line) and EB2770FurC cells 

28 (dashed line) (A). Determination of Chl a (B), phycobiliproteins (C), total proteins (D) and carotenoid 

29 (E) contents in EB2770FurC cells (light grey bars) compared to Anabaena sp. PCC7120 (dark grey 

30 bars) at different stages of growth. The results were normalized to the same optical density at 750 
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1 nm. (F) Relative transcription of the phycobilisome core genes apcA, apcC and apcE 

2 (allophycocyanin subunits A, C and E), cpcB (phycocyanin B) and the linker peptides cpcG and 

3 pecC. Values were determined by real-time RT-PCR in EB2770FurC cells with respect to Anabaena 

4 sp. PCC7120. Values are expressed as fold change and correspond to the average of three 

5 independent assays. 

6

7 Figure 7. Fluorescence emission spectra at 77K of Anabaena sp. PCC7120 (squares) and 

8 EB2770FurC (triangles) strains harvested at the exponential phase of growth. (A) Emission spectra 

9 excited at 440 nm to monitor energy transfer from photosystems to Chl a. Spectra were normalized 

10 to identical concentration of Chl a in both strains. (B) Emission spectra excited at 580 nm to check 

11 energy transfer from phycobilisomes to Chl a. In this case, spectra were normalized to identical 

12 concentration of phycobiliproteins in both strains. The presented spectra are representative of two 

13 separate experiments.

14

15 Figure 8. Fluorescence induction parameters of Anabaena sp. PCC7120 and the EB2770FurC 

16 derivative upon continuous cultivation on the Ca2+-less BG-11 medium. During preparation of this 

17 medium CaCl2 (0.24 mM) was replaced by 0.48 mM NaCl. The final concentration of Ca2+ was the 

18 same as the level of this ion in the double distilled water. Upon subculturing, cells in mid-

19 exponential phase (OD730=0.4-0.6) were diluted to OD730=0.03 to start the successive culture. The 

20 number of each subculture is indicated in X axis. Fv/Fm ratio was determined according to (Genty 

21 et al., 1989) and plotted on Y axis. Values represent mean and standard deviation from 5 

22 independent experiments.

23

24 Figure 9. Tolerance to oxidative stress induced by treatment with H2O2. Anabaena sp. strains were 

25 grown in BG-11 medium to late log phase, washed and adjusted to the same cell density. Cell 

26 suspensions were challenged in duplicate either to increasing concentrations of H2O2 up to 10 mM 

27 for 24h (A) and 48 h (C) in the dark and the estimation of chlorosis was documented by reading the 

28 microtiter plate absorbance at 620 nm at 24h (A) and 48h (B). Each experiment was done twice with 

29 similar results.

30
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1 Figure 10. Study of the regulation by FurC of genes involved in the oxidative stress response. (A) 

2 Relative transcription (EB2770FurC versus Anabaena sp. PCC7120) of Anabaena peroxiredoxins, 

3 srxA, sodA and catalase alr0998 genes and their transcriptional response to the oxidative challenge 

4 imposed by H2O2 measured by real-time RT-PCR. Values are expressed as fold change and 

5 correspond to the average of three independent assays; the standard deviation is indicated (B) 

6 Electrophoretic mobility shift assays showing the ability of FurC to bind in vitro the promoter regions 

7 of prxA, srxA, ahpC, CGT3 and alr4404. DNA fragments free or mixed with the indicated 

8 concentrations of recombinant FurC (nM) were separated by 6 % PAGE. An internal fragment of the 

9 gene pkn22 was used as non-specific competitor DNA.

10
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