137 research outputs found

    New insights into potocki-shaffer syndrome: Report of two novel cases and literature review

    Get PDF
    Potocki-Shaffer syndrome (PSS) is a rare non-recurrent contiguous gene deletion syndrome involving chromosome 11p11.2. Current literature implies a minimal region with haploinsufficiency of three genes, ALX4 (parietal foramina), EXT2 (multiple exostoses), and PHF21A (craniofacial anomalies, and intellectual disability). The rest of the PSS phenotype is still not associated with a specific gene. We report a systematic review of the literature and included two novel cases. Because deletions are highly variable in size, we defined three groups of patients considering the PSS-genes involved. We found 23 full PSS cases (ALX4, EXT2, and PHF21A), 14 cases with EXT2-ALX4, and three with PHF21A only. Among the latter, we describe a novel male child showing developmental delay, café-au-lait spots, liner postnatal overgrowth and West-like epileptic encephalopathy. We suggest PSS cases may have epileptic spasms early in life, and PHF21A is likely to be the causative gene. Given their subtle presentation these may be overlooked and if left untreated could lead to a severe type or deterioration in the developmental plateau. If our hypothesis is correct, a timely therapy may ameliorate PSS phenotype and improve patients’ outcomes. Our analysis also shows PHF21A is a candidate for the overgrowth phenotype

    Drug Absorption Modeling as a Tool to Define the Strategy in Clinical Formulation Development

    Get PDF
    The purpose of this mini review is to discuss the use of physiologically-based drug absorption modeling to guide the formulation development. Following an introduction to drug absorption modeling, this article focuses on the preclinical formulation development. Case studies are presented, where the emphasis is not only the prediction of absolute exposure values, but also their change with altered input values. Sensitivity analysis of technologically relevant parameters, like the drug’s particle size, dose and solubility, is presented as the basis to define the clinical formulation strategy. Taking the concept even one step further, the article shows how the entire design space for drug absorption can be constructed. This most accurate prediction level is mainly foreseen once clinical data is available and an example is provided using mefenamic acid as a model drug. Physiologically-based modeling is expected to be more often used by formulators in the future. It has the potential to become an indispensable tool to guide the formulation development of challenging drugs, which will help minimize both risks and costs of formulation development

    Human impact parameterizations in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study

    Get PDF
    Human activities have a profound influence on river discharge, hydrological extremes, and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the simulation of the mean, high, and low flows. The analysis is performed for 471 gauging stations across the globe and for the period 1971-2010. We find that the inclusion of HIP improves the performance of GHMs, both in managed and near-natural catchments. For near-natural catchments, the improvement in performance results from improvements in incoming discharges from upstream managed catchments. This finding is robust across GHMs, although the level of improvement and reasons for improvement vary greatly by GHM. The inclusion of HIP leads to a significant decrease in the bias of long-term mean monthly discharge in 36-73% of the studied catchments, and an improvement in modelled hydrological variability in 31-74% of the studied catchments. Including HIP in the GHMs also leads to an improvement in the simulation of hydrological extremes, compared to when HIP is excluded. Whilst the inclusion of HIP leads to decreases in simulated high-flows, it can lead to either increases or decreases in low-flows. This is due to the relative importance of the timing of return flows and reservoir operations and their associated uncertainties. Even with the inclusion of HIP, we find that model performance still not optimal. This highlights the need for further research linking the human management and hydrological domains, especially in those areas with a dominant human impact. The large variation in performance between GHMs, regions, and performance indicators, calls for a careful selection of GHMs, model components, and evaluation metrics in future model applications

    Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities

    Get PDF
    PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex

    Safety and efficacy of low-dose sirolimus in the PIK3CA-Related Overgrowth Spectrum

    Get PDF
    Purpose PIK3CA-related overgrowth spectrum (PROS) encompasses a range of debilitating conditions defined by asymmetric overgrowth caused by mosaic activating PIK3CA variants. PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol-3-kinase (PI3K), a critical transducer of growth factor signaling. As mTOR mediates the growth-promoting actions of PI3K, we hypothesized that the mTOR inhibitor sirolimus would slow pathological overgrowth. Methods Thirty-nine participants with PROS and progressive overgrowth were enrolled into open-label studies across three centers, and results were pooled. For the primary outcome, tissue volumes at affected and unaffected sites were measured by dual energy X-ray absorptiometry during 26 weeks of untreated run-in and 26 weeks of sirolimus therapy. Results Thirty participants completed the study. Sirolimus led to a change in mean percentage total tissue volume of –7.2% (SD 16.0, p = 0.04) at affected sites, but not at unaffected sites (+1.7%, SD 11.5, p = 0.48) (n = 23 evaluable). Twenty-eight of 39 (72%) participants had ≥1 adverse event related to sirolimus of which 37% were grade 3 or 4 in severity and 7/39 (18%) participants were withdrawn consequently. Conclusion This study suggests that low-dose sirolimus can modestly reduce overgrowth, but cautions that the side-effect profile is significant, mandating individualized risk–benefit evaluations for sirolimus treatment in PROS

    Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network

    Get PDF
    Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF
    • …
    corecore