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Abstract (only online version) 

Pharmacokinetic issues have been identified as a major cause for the attrition of 

new chemical entities in drug discovery. High development costs and time invest-

ments are associated with the discovery of such issues during clinical drug devel-

opment. To overcome this problem, various in vitro and in silico ADME (Absorp-

tion, Distribution, Metabolism, Excretion) tools have been developed to predict 

drug pharmacokinetics using only a minimal amount of experimental data. Select-

ing the most appropriate option(s) from this broad range of in vitro and in silico 
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ADME tools is challenging for drug discovery scientists as it requires consideration 

of a number of factors including the stage of the discovery process, any data al-

ready generated for a lead molecule or series and an awareness of the limitations 

and advantages of each ADME tool. ADME parameters, obtained through experi-

mental approaches and/or in silico prediction, are also essential inputs to physio-

logically-based pharmacokinetic models for the prediction of in vivo pharmacoki-

netics. Available in vitro and in silico ADME tools are presented and assessed in the 

following book chapter. 

Key words (only online version) 
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1. Introduction 

A study in 1997 showed that 39% of new chemical entities failed in clinical drug 

development due to issues related to pharmacokinetics (Kennedy 1997). This find-

ing underlined the need for the development of tools suitable to identify com-

pounds with a poor bioavailability at an early stage in the drug discovery process. 

In the last decades, a large number of in vitro and in silico tools for ADME predic-

tion has been developed that contributed to the reduction of the drug attrition 

rate due to poor pharmacokinetic properties to 10% in 2000 (Kola and Landis 

2004). Especially, the prediction of cytochrome P450 (CYP) related metabolism 

added to this improvement. ADME prediction for drug candidates using in vitro 

and in silico tools, helps in the selection of lead compounds before reaching clinical 

trials. In turn, unsuccessful drug candidates can be identified at an earlier stage 

resulting in the saving of time and costs. The knowledge of advantages and limita-

tions of each ADME prediction tool are key to select the appropriate tool and to 

build confidence in the prediction. Considering drug absorption, solubility and dis-

solution studies are especially important for poorly soluble drugs while for other 

compounds absorption may be limited by intestinal membrane permeability. Drug 
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distribution can have implications on the duration of the drug effect and be asso-

ciated with a risk of not reaching therapeutic concentrations in vivo, especially for 

lipophilic drugs. The use of in vitro and in silico tools assessing plasma protein bind-

ing, partitioning into red blood cells and distribution into peripheral tissues helps 

to identify those issues. Drug metabolism by metabolic enzymes influences the 

clearance profile and is often a source of interindividual pharmacokinetic variabil-

ity or Drug-Drug interactions. In vitro and in silico predictions of drug metabolism 

should consider the enzymatic reaction as well as the relevant enzymatic expres-

sion in the respective tissue. Drug exposure can also be limited by drug excretion. 

Therefore, in vitro and in silico tools are available for the complex processes of 

biliary and renal excretion. While the consideration of each of the previous ADME 

processes separately helps to identify issue related to one process, their mutual 

interaction can negate or improve the drug’s pharmacokinetic profile. Physiologi-

cally-based pharmacokinetic (PBPK) models take into account all ADME processes 

together by integration of various experimental results, and in silico predictions of 

unknown parameters and in vivo performance can be made. 

Overview ends 
 

2. Absorption 

Drug absorption after oral administration is a very complex process influenced by 

drug properties, formulation-dependent factors and physiological conditions. Drug 

absorption includes several underlying processes e.g., release and/or dissolution 

of the drug from the pharmaceutical formulation in the gastrointestinal fluids and 

permeation of the dissolved drug through the gastrointestinal membrane. There-

fore, determination of the rate-limiting process governing the absorption of the 

investigated drug based on its physicochemical properties is essential.  

The Biopharmaceutics Classification System (BCS), introduced in 1995 by Amidon 

et al. (1995), aimed to correlate in vitro drug dissolution with in vivo bioavailability. 

Drugs are classified based on three dimensionless parameters determining their 

absorption (dose number, dissolution number and absorption number) and their 

underlying drug properties (solubility and permeability). Four different BCS classes 

are defined: BCS class 1 includes compounds with high solubility and high perme-

ability for which gastric emptying (for when drug dissolution is very rapid) or drug 

dissolution are the rate limiting step to drug absorption. BCS class 2 drugs have a 
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low solubility and a high permeability presenting solubility or dissolution rate lim-

ited absorption. BCS class 3 contains high solubility and low permeability com-

pounds for which the rate limiting step to drug absorption is permeability. BCS 

class 4 includes low solubility and low permeability compounds which are usually 

challenging for oral drug delivery. Once a compound is classified according to the 

BCS, formulation development can be guided. For example, if the solubility of a 

compound is problematic, subsequent efforts in formulation development with 

e.g. enabling formulations may be required.   

Several “rule of thumb” approaches have been introduced to categorise new 

chemical entities according to characteristics which increase their likeliness to be 

adequately absorbed in vivo. The most popular method to identify compounds at 

risk of poor absorption and permeation was developed based on an analysis of the 

World Drug Index and is called Lipinski’s “rule of five”. The rule implies that drugs 

with >5 hydrogen bond donors, a molecular weight >500 Da, an octanol-water par-

tition coefficient (log P) >5 and >10 hydrogen bond acceptors have an increased 

risk for poor absorption (Lipinski et al. 2001). An exception of this rule are drug 

classes that are substrates for biological transporters. Another analysis by Veber 

et al. (2002) used oral bioavailability data of over 1000 drugs in rats and identified 

that drugs with ≤10 rotatable bonds and a polar surface area ≤140 Å2 (or 12 or 

fewer H-bond donors and acceptors) are likely to have a good oral bioavailability. 

The bioavailability score is another approach stating that the predominant charge 

at biological pH determines the properties that are important for a compound’s 

bioavailability (Martin 2005). The important parameter for anions is the polar sur-

face area, while for neutral, zwitterionic or cationic compounds the previously de-

scribed Lipinski’s rule of five is more predictive. Additional strategies aim to iden-

tify drug-like molecules that are also expected to meet ADME profiles using simple 

structural rules or neural network approaches (Muegge et al. 2001). 

2.1 In vitro methods 

2.1.1 Solubility 

Drug solubility can be a limiting factor in drug absorption and its importance is 

highlighted by the fact that 75% drug development candidates are poorly soluble 

and belong to BCS class 2 or 4 (Di et al. 2009). In early development, high through-

put methods are used to determine the solubility of a large number of compounds. 
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These methods typically include a concentrated stock solution of the investigated 

drug in DMSO which is either directly added to a buffer (often pH 6.5 or 7.4) or 

evaporated and subsequently a buffer is added to the remaining material to re-

duce the effect of DMSO on solubility. The solution can be analysed by different 

methods including light scattering, turbidimetry, LC-UV or LC-MS. The drug con-

centration at which the first induced precipitate appears in a solution is called ki-

netic solubility. A ‘semi-equilibrium’ solubility refers to the solution being incu-

bated for approximately one day followed by its filtration and the determination 

of drug concentration (Di et al. 2012a). While the latter method allows some time 

for equilibration between solid drug and solution, supersaturation is a frequent 

problem for kinetic solubility measurements. Additionally, the evaporation of 

DMSO can leave the drug in an energetically higher state (amorphous form) possi-

bly resulting in a higher solubility. Consequently, high throughput methods present 

the “best case scenario” of drug solubility (Di et al. 2012a). 

Equilibrium (thermodynamic) solubility refers to the concentration of the satu-

rated solution in equilibrium with the thermodynamically stable polymorph 

(Bergstrom et al. 2014). Measurements of equilibrium solubility are performed 

with the shake flask method in later phases of drug development when crystalline 

drug material becomes available. The characterisation of the solid form by e.g. po-

larized light microscopy and powder X-ray diffraction provides information about 

potential solid form changes.  

At this stage, apart from simple buffers (pH 1.2, 6.5, 7.4) the solubility is also tested 

in biorelevant media that closely simulate the gastrointestinal fluids (Di et al. 

2012a). Biorelevant media were developed since the solubility of a drug in water 

or simple buffers is not always reflective of the solubility in the gastrointestinal 

lumen (Galia et al. 1998). Especially for lipophilic drugs, biliary secretions or dietary 

lipids can enhance drug solubility. To consider these differences in in vitro experi-

ments, biorelevant media can reflect the osmolality, pH and buffer capacity of gas-

trointestinal fluids and can include bile components, dietary lipids, lipid digestion 

products and enzymes. Depending on the investigated drug, not all components 

and properties of the medium may be necessary to reflect the in vivo solubility and 

thus, the level of the biorelevant medium can be chosen accordingly (Figure 13.1) 

(Markopoulos et al. 2015).  

 

Please insert Figure 13.1 here 
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2.1.2 In vitro release and dissolution testing 

Apart from the solubility of a drug, the dissolution rate can also be limiting for the 

drug absorption of poorly soluble drugs. Additionally, the release of the drug sub-

stance from a drug product can be critical for the drug product performance in 

vivo. For development purposes, in vitro tests should adequately represent the 

gastrointestinal physiology to be able to sufficiently reflect drug dissolution, deg-

radation, supersaturation, precipitation and re-dissolution in vivo and to guide for-

mulation development (Kostewicz et al. 2014b; Wang et al. 2009). Therefore, the 

experimental design should consider the composition, volume, flow rates and mix-

ing patterns of the gastrointestinal fluids (Dressman et al. 1998; Fotaki and 

Vertzoni 2010).  

Four dissolution apparatus are included in the United States Pharmacopoeia for 

oral drug products. In the USP apparatus 1 (Basket Apparatus) the investigated 

drug product is placed in a spinning basket in the middle of a cylindrical vessel with 

hemispherical bottom filled with dissolution medium.(US Pharmacopeial 

Convention 2005) The USP apparatus 2 (Paddle Apparatus) uses the same vessel 

but a paddle is used as stirring element (US Pharmacopeial Convention 2005). For 

both apparatus, methods usually use high volumes of dissolution medium (500-

1000 mL) to generate sink conditions. Especially in the fasted state, the high vol-

umes are unlikely to match the in vivo situation. This is particularly an issue if sink 

conditions are not maintained in vivo resulting in an overestimation of drug disso-

lution. For drugs with high solubility (BCS class 1 and 3), sink conditions are usually 

maintained in vivo. For drugs with low solubility, the conditions in those dissolution 

experiments are likely to mismatch the in vivo situation. At highest risk are BCS 

class 4 drugs, since the high membrane permeability of BCS class 2 drugs results in 

constant removal of dissolved drug from the luminal fluids (Kostewicz et al. 

2014b). Furthermore, coning effects and variability in hydrodynamics depending 

on the investigated dosage form (size, shape, density) and its location in the vessel 

often result in a lack of correlation to physiological conditions (Kostewicz et al. 

2014b). In the USP apparatus 3 (Reciprocating Cylinder) the drug product is placed 

in a glass tube with a mesh base that reciprocates vertically in a cylindrical, flat-

bottomed glass vessel filled with dissolution medium (US Pharmacopeial 

Convention 2005). Media changes can be easily performed by moving the glass 

tube from one vessel to another vessel but limit the usage of the apparatus to non-

disintegrating dosage forms. Typical volumes of dissolution medium are 250 mL in 

each glass vessel. Hydrodynamics can be adjusted by changing the rate of the re-

ciprocating movement and mesh size of the sieve. For these three USP apparatus, 
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the temperature can be controlled with a tempered water-bath surrounding the 

dissolution vessels. In the USP apparatus 4 (Flow-Through Cell), the drug product 

is placed in a flow-through cell, through which the dissolution medium can be 

pumped with an adjustable flow rate (usually 4 to 16 mL/min) and which is im-

mersed in a tempered water bath. The advantages of the flow-through cell are the 

possibility to change flow rate and media within a single experiment and to main-

tain sink conditions if the system is used in open mode (continuously fresh disso-

lution medium from the reservoir) (Fotaki 2011). 

Apart from the apparatus described in the USP, various biopharmaceutic tools 

have been developed to simulate the dissolution process in vitro. Biphasic dissolu-

tion tests can be useful for poorly soluble compounds as membrane permeation is 

simulated with an organic layer constantly removing drug from the aqueous me-

dium to maintain sink conditions. Integrated permeation systems such as the 

μFlux™ (Pion Inc., Woburn, MA, US) have the advantage of simultaneous measure-

ments of dissolution and permeability. Surface dissolution imaging is used to un-

derstand surface effects during dissolution and quantify swelling, erosion and dis-

integration kinetics. The use of physiologically relevant bicarbonate buffers in 

dissolution tests was shown to be more discriminative for e.g. enteric coated for-

mulations but is laborious and results were shown to be less reproducible (Liu et 

al. 2011; Boni et al. 2007). Transfer models were able to successfully predict drug 

precipitation of weak bases in vivo by constantly transferring medium from a gas-

tric donor compartment to an intestinal acceptor compartment (Kostewicz et al. 

2004). Complex gastrointestinal simulators such as the TNO Gastro-Intestinal 

Model (TNO, Zeist, Netherlands) simulate the conditions in the lumen of the gas-

trointestinal tract very closely by mimicking digestive fluids, constant removal of 

metabolites and control of pH, temperature and luminal transit.  

2.1.3  Permeability 

For the prediction of the permeability of a compound across the intestinal barrier, 

several methods can be used ranging from simple filter-immobilized artificial 

membranes, in vitro cell cultures to in situ perfusion studies (Table 13.1).  

Please insert Table 13.1 here 

In the early stages of drug discovery, methods suitable for high throughput screen-

ing are used such as parallel artificial membrane permeability assays (PAMPA). 

PAMPA consists of a microporous filter which is infused by a lipid or a lipid mixture 
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dissolved in a nonpolar solvent and which separates two aqueous, pH-buffered 

solutions in a microplate sandwich (Caldwell and Yan 2014). The concentration 

gradient between the two compartments is the driving force for the permeability 

of the investigated compound. This driving force can be maintained, and the ex-

perimental time can be reduced with the use of a pH-gradient, the addition of 

cosolvents/solubilizing agents or addition of compounds to simulate protein bind-

ing in the donor compartment (Caldwell and Yan 2014). 

Other permeability assays use immortalized cell cultures with the ability to form 

polarised monolayers (with distinct apical and basolateral morphologies) as mem-

branes (Alqahtani et al. 2013). The most commonly used cells are Caco-2 cells, de-

rived from a human colon adenocarcinoma and also available for high throughput 

screening. Caco-2 cells are usually cultured for at least twenty days to express high 

amounts of transporter enzymes, form tight junctions and obtain cell polarity 

(Alqahtani et al. 2013; Bohets et al. 2001). The expression of endogenous trans-

porter systems such as P- glycoprotein (P-gp) and several drug metabolizing en-

zymes like aminopeptidase, esterase, sulfatase and some CYP450 isoenzymes is 

the main advantage of Caco-2 cells while paracellular permeability is often under-

predicted due to “tighter” tight junctions (Alqahtani et al. 2013; Lea 2015). The use 

of Madin-Darby canine kidney cells (MDCK), derived from the distal tubular part of 

the dog kidney, has the advantage of reducing the time needed for the formation 

of a polarised monolayer with well-defined tight junctions. Additionally, the tran-

sepithelial electrical resistance (TEER) is lower compared to Caco-2 cells indicating 

increased “leakiness” (Braun et al. 2000). The non-human origin of these cells has 

the disadvantage of different enzyme and transporter expression. To overcome 

this issue, it is possible to transfect the cells with e.g., P-gp, MRPs (Multidrug Re-

sistance-associated Protein) or BCRP (Breast Cancer Resistance Protein). To only 

investigate passive permeability, special cell lines with low expression of endoge-

nous canine transporters such as MDCKII-Low  Efflux  cells can be used (Di et al. 

2011). The apparent permeability observed using cultured cell lines must be nor-

malized according to accessible intestinal surface area, paracellular permeability, 

pH dependence, resistance of the aqueous boundary layer and transcellular per-

meability to predict the effective permeability in vivo (Avdeef 2012).  

Additionally, permeability can be assessed ex vivo using Ussing chambers. An ex-

cised intestinal segment (from rat, mouse, rabbit, dog, monkey or human) is 

mounted between two diffusion cells usually filled with Krebs-Ringer bicarbonate 

buffer (Alqahtani et al. 2013). Despite the supply of nutrients and carbogen gas 

during the experiment, tissue viability can only be maintained for 2-3 hours. The 
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method results in good predictions of intestinal drug absorption and provides in-

formation about influx/efflux transport and drug metabolism.  

A labour-intensive method is the in situ perfusion model. This includes the perfu-

sion of an isolated intestinal segment of the small bowel of rats with a solution 

containing the investigated drug (Alqahtani et al. 2013). The rat is unconscious 

during the experiment and its body temperature is controlled with a heating pad 

or an overhead lamp (Stappaerts et al. 2015). Drug permeability can then be cal-

culated by the difference between inlet and outlet flow of the investigated drug. 

To account for differences in drug concentration due to water absorption or secre-

tion, non-absorbable markers (e.g., phenol red) or gravimetric methods can be 

used (Stappaerts et al. 2015). The method allows distinction between regional per-

meability differences and considers active transport mechanisms. Additionally, in-

testinal metabolism can also be investigated for example by concomitant admin-

istration of inhibitors of metabolizing enzymes or by mesenteric blood sampling 

(Stappaerts et al. 2015). By considering only the difference in drug perfusate con-

centration, drug absorption may be overestimated for drugs that are accumulated 

in the gut wall or metabolised by intestinal enzymes. Furthermore, the use of an-

aesthesia can have a possible impact on drug permeability.  

2.1.4 Active transport 

The involvement of active transport mechanisms in the membrane permeation of 

a drug can mediate or limit its absorption but also be responsible for Drug-Drug 

interactions. Bioavailability can be increased by drug transport from the luminal to 

the basolateral site via influx transporters or decreased by transport in opposite 

direction via efflux transporters.  

The in vitro assessment of active transport mechanisms includes cell-based and 

subcellular assays. In both cases, cells are incubated with a drug solution followed 

by the monitoring of changes in drug concentration. In cell-based assays, transport 

proteins are over-expressed in a transfected cell line such as MDCK cells, HEK (Hu-

man Embryonic Kidney) or LLC-PK1 (Lewis Lung Carcinoma-Pig Kidney) (Caldwell 

and Yan 2014). Another approach is to partially or completely silence (knock down) 

a natively expressed transporter protein in a cell line, for example, P-gp in Caco-2 

cells and compare the drug permeability to the unmodified cell line (Caldwell and 

Yan 2014). Other methods for active transport studies include the use of primary 
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cells such as hepatocytes and membrane vesicles (described in detail below in Sec-

tion 12.5.1). 

2.1.5 Gut wall metabolism 

The intestine with numerous metabolizing enzymes is involved in the metabolism 

of compounds undergoing Phase 1 and 2 reactions. Several in vitro methods are 

available to investigate intestinal drug metabolism. For drugs that are rapidly me-

tabolised, suitable methods include the use of isolated intestinal perfusion, the 

everted sac method and Ussing chambers (van de Kerkhof et al. 2007). For isolated 

intestinal perfusions, a segment of the intestine is removed from an animal (e.g. 

rat) and placed in a bath filled with buffer followed by perfusion with the investi-

gated compound from the luminal or vascular side (van de Kerkhof et al. 2007). 

The everted sac method includes eversion of intestine (most often from rat) and 

its cannulation from both sides followed by drug perfusion. Disadvantages of these 

two methods are their limitation to short-term incubation and the animal origin of 

the tissue. The Ussing chamber, as described above in Section 2.1.3, can also be 

used for investigations of intestinal drug metabolism.  

For drugs that are slowly metabolised, more appropriate in vitro tools for gut wall 

metabolism are biopsies, intestinal precision-cut slices (thickness 250-400 μm) and 

primary cells.(van de Kerkhof et al. 2007) Limitations of these methods are that it 

is not possible to study the direction of excretion and the very difficult isolation 

procedures for primary enterocytes.(van de Kerkhof et al. 2007)  

For mechanistic investigations of relevant metabolic enzymes, interaction studies 

and enzyme kinetics, in vitro assays include subcellular fractions from enterocytes 

and cell cultures similarly to the assays for hepatic metabolism as further discussed 

below in Section 4.1. 
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2.2 In silico methods 

2.2.1 Solubility 

In the initial stages of drug development, in silico solubility predictions are used to 

screen new chemical entities for drug-like characteristics. A large number of in sil-

ico tools is available for the prediction of aqueous solubility based on training sets 

of experimental data and either experimentally determined properties or compu-

tational 1D, 2D and 3D molecular descriptors such as hydrophobicity, molecular 

surface area and electron distribution (Figure 13.2)(Dokoumetzidis et al. 2007). 

The lipophilicity (logP, clogP), the size of the molecule and the surface area of the 

non-polar atoms have been identified as the most important predictors for aque-

ous solubility.(Dokoumetzidis et al. 2007) 

Please insert Figure 13.2 here 

Aqueous solubility is determined by the sublimation energy and hydration energy 

of a drug. The extensively-used modified Yalkowsky’s general solubility equation 

(Eq. 13.1) describes the water solubility of a molecule (𝑆0(𝑀)) using the logarithm 

of the octanol/water partition coefficient (log 𝑃𝑂𝑐𝑡) to reflect the hydration energy 

and the melting point (𝑚. 𝑝.) to reflect the crystal lattice energy (Jain and 

Yalkowsky 2001). 

log 𝑆0(𝑀) = − log 𝑃𝑂𝑐𝑡 − 0.01(𝑚. 𝑝. −25) + 0.50  (13.1) 

For highly lipophilic drugs, micellar solubilisation can improve drug solubility, while 

for drugs with a high melting point solubility can be improved by modifications of 

the structure resulting in a reduction of lattice energy.(Sugano 2012) To consider 

ionisation effects it has been proposed to use the logarithm of the distribution co-

efficient (logD) at pH 7.4 instead of the log 𝑃𝑂𝑐𝑡  for the solubility prediction.(Hill 

and Young 2010) 

For weakly acidic and basic drugs, differences in drug solubility along the gastroin-

testinal tract can be a result of drug ionisation. pH-dependent solubility profiles 

can be predicted in silico using the Henderson-Hasselbalch equation.(Hansen et al. 

2006) Additionally, the aqueous solubility may differ from the solubility in gastro-

intestinal fluids, especially for lipophilic compounds, due to e.g. luminal surfac-

tants such as bile salts or lecithin. If reliable predictions of drug solubility in gastro-

intestinal fluids could be obtained using computational models, this could replace 
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laborious biorelevant solubility studies. For several compounds, successful predic-

tions for the increase in solubility as a function of bile salt concentrations could be 

made using an empirical equation introduced by Mithani et al., 1996 (Eq. 13.2 and 

13.3) (Mithani et al. 1996).  

log 𝑆𝑅 = 2.09 + 0.64 log 𝑃      (13.2) 

𝐶𝑆𝑋 = 𝐶𝑆𝑂 + (𝑆𝐶𝑏𝑠)(𝑀𝑊)([𝑁𝑎𝑇𝐶])    (13.3) 

where 𝑆𝑅 is the solubilisation ratio, 𝐶𝑆𝑋 is the solubility [μg/mL] in the presence of 

taurocholate, 𝐶𝑆𝑂 is the aqueous solubility [μg/mL], 𝑀𝑊 is the molecular weight 

and [𝑁𝑎𝑇𝐶] is the concentration of sodium taurocholate. It should be noted that 

the equation only considers the effect of sodium taurocholate, but gastrointestinal 

fluids are more complex containing e.g. lipids and mixed micelles as colloidal ag-

gregates.  

For solvation processes, Abraham et al. (1987) described a solvation-related prop-

erty based on several parameters such as the McGowan's characteristic volume, 

hydrogen-bonding acidity and basicity, polarizability and an excess molar refrac-

tion descriptor. These Abraham solvation predictors have been successfully used 

to predict the solubility enhancement in biorelevant media (Fasted State Simu-

lated Intestinal Fluid) compared to a simple buffer (Niederquell and Kuentz 2018). 

Most prominent were a positive effect of McGowan's characteristic volume and a 

negative effect of drug basicity on solubility enhancement. 

2.2.2 Drug release and dissolution 

In most oral dosage forms, the active pharmaceutical ingredient is administered in 

solid form. For these formulations, the drug needs to be released from the formu-

lation and dissolve in the gastrointestinal fluids prior to its intestinal membrane 

permeation. If drug dissolution occurs slowly in the gastrointestinal tract, it can be 

the limiting step for drug absorption. Diffusion theory is widely used to describe 

particle dissolution assuming drug dissolution is controlled by the diffusion of the 

solute through a stagnant diffusion layer surrounding solid particles.  

In 1897, it was shown by Noyes and Whitney (1897) that the rate of drug dissolu-

tion is proportional to the difference between the saturation solubility (𝐶𝑠) and the 

present drug concentration at time 𝑡. This relationship was further modified to the 

Nernst-Brunner law  
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𝑑𝐶

𝑑𝑡
=

𝐷𝑆

𝑉ℎ
(𝐶𝑠 − 𝐶𝑡)       (13.4) 

where 𝐶  is the concentration, 𝑡 is the time, 𝐷 is the diffusion coefficient, 𝑆 is the 

surface of the solid particles, 𝑉 is the volume of the dissolution medium and ℎ is 

the thickness of the diffusion layer.(Brunner 1904; Nernst 1904) This dissolution 

model is still widely used today.(Dokoumetzidis et al. 2007) The diffusion coeffi-

cient can be derived from the Stokes-Einstein equation or the Hayduk-Laudie 

equation for non-electrolytes.(Hayduk and Laudie 1974) A further improvement 

was made by Wang and Flanagan resulting in a generalised diffusion layer model 

for spherical particles (Eq. 13.5 that considers a time-dependent reduction of the 

particle radius, a nonlinear concentration gradient in the diffusion layer and 

changes in the thickness of the effective boundary layer (Wang and Flanagan 1999, 

2002). 

𝑑𝐶

𝑑𝑡
= −4𝜋𝑟𝑡

2 ∗ 𝐷 ∗ [
1

𝑟𝑡
+

1

ℎ
] ∗ [𝐶𝑠 − 𝐶𝑡]    (13.5) 

The particle radius, 𝑟𝑡, is time dependent and influences the thickness of the effec-

tive boundary layer ℎ. In the case of small particles (𝑟 < 30 μm) the particle radius 

is considered to be equal to  ℎ, while for larger particle radii (𝑟 > 30 μm) ℎ is set to 

30 μm (Peters 2012).  

For particles with substantially larger diameters compared to the diffusion layer 

thickness, the diffusion layer can be assumed as planar resulting in the cube root 

equation: 

𝑄
1

3 = 𝑄0

1

3 − 𝑘1/3𝑡      (13.6) 

with the cube roots of the weight of a spherical particle at time 0, 𝑄0

1

3 , and time 

𝑡, 𝑄
1

3, and the cube root rate constant, 𝑘1/3 , as described by Hixson and Crowell 

(Hixson and Crowell 1931). The cube rate constant can be further described as: 

𝑘1/3 = (
𝜋

6𝜌2)1/3 2𝐷𝐶𝑠

ℎ
      (13.7) 

with 𝐷 as the diffusion coefficient, 𝐶𝑠 as the equilibrium solubility, ℎ  as the thick-

ness of the diffusion layer and 𝜌 as the density. 

For the modeling of in vitro dissolution data, fitting of the data can be obtained 

using empirical equations. The Weibull equation (Equation 8) is the most com-

monly used equation due to its flexibility to fit almost any dissolution data 
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𝑊𝑡 = 𝑊𝑚𝑎𝑥[1 − e
−(

(𝑡−𝑇𝑙𝑎𝑔)𝑏

𝑎
)

]      (13.8) 

where 𝑊𝑡 is the amount dissolved at time t, 𝑊𝑚𝑎𝑥  is the maximum amount dis-

solved, 𝑡 is time, 𝑇𝑙𝑎𝑔  is the lag time before the onset of dissolution, a is a scale 

parameter and b is a shape parameter characterizing the curve (exponential curve 

b=1, sigmoid curve b > 1, parabolic curve b < 1).(Langenbucher 1972) Other empir-

ical approaches include gamma distribution, power laws, discrete time-step differ-

ence equations and stochastic differential equations.(Dokoumetzidis et al. 2007) 

For in vivo predictions of drug dissolution, parameters with physical meaning de-

rived from mechanistic models are usually used in absorption mod-

els.(Dokoumetzidis et al. 2007) 

In certain cases, drug absorption can also be determined by the release of a drug 

from the formulation. Controlled-release formulations are for example developed 

to reduce dosing frequency, to avoid toxicity for drugs with a narrow therapeutic 

index or to locally deliver drugs in the gastrointestinal tract. The drug release rate 

of these formulations is constant over a certain time and is diffusion-controlled, 

swelling-controlled or chemically-controlled (Siepmann and Peppas 2011). This 

steady release process allows the direct use in vitro release profiles for in vivo pre-

dictions or even to use empirical equations. For the analysis of drug release data, 

the Higuchi model (Equation 9) is widely used but should only be applied to the 

first 60% of drug release 

𝑞(𝑡)

𝑞∞
= 𝑘√𝑡       (13.9) 

with 𝑞(𝑡) as the drug released at time 𝑡, 𝑞∞ as cumulative amount of drug released 

at infinite time and the constant 𝑘.(Higuchi 1961) Assumptions behind this model 

are that the carrier is of a thin planar geometry and the medium acts as a prefect 

sink. Adapted models for carriers with different geometries have been proposed 

in literature (Baker 1987). Other models used for drug release are the Peppas 

equation, Weibull equation, Baker and Lonsdale equation, Hixson and Crowell 

equation or Monte Carlo simulation methods (Carbinatto et al. 2014). 

2.2.3 Permeability 

In silico approaches to predict passive permeability of novel compounds are mostly 

developed based on data sets of compounds with known in vitro permeability in 

different cell lines (e.g. Caco-2, MDCK, PAMPA) and are used in drug discovery for 
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the selection of novel compounds for synthesis (Broccatelli et al. 2016). Often 

these in silico models are based on multivariate statistical analysis (e.g. partial 

least-squares regression) that correlate in vitro results to 2D or 3D molecular de-

scriptors (Zhang et al. 2006; Broccatelli et al. 2016). Other in silico approaches in-

clude mechanistic mathematical models developed for the passive transcellular 

drug transport which are for example based on simple physicochemical properties 

such as logP and pKa (Zhang et al. 2006). Such mechanistic models describing pas-

sive permeability can be augmented with additional processes such as active influx 

and efflux transport. This more complex system description can be used to define 

the properties of the enterocyte as a separate compartment for absorption 

(Dokoumetzidis et al. 2007). Such models are for example implemented in PBPK 

models that are commercially available such as the software SimCyp® (Certara, 

Sheffiled, UK) or GastroPlus™ (Simulations Plus, US).  

2.2.4 Active transport 

Drug-transporter interactions can be modeled in silico either based on a set of 

compounds with known transporter activity (substrate-based methods) or based 

on the 3D-structure of the transporter (transporter-based methods) (Chang and 

Swaan 2006). Substrate-based methods use molecular descriptors or chemical 

properties for pharmacophore or 3D-QSAR modeling without the need for prior 

information about the structure of the transporter. Such models exist for a variety 

of different transporters such as P-glycoprotein, organic cation and anion trans-

porters, bile acid transporters and nucleoside transporters (Chang and Swaan 

2006). Transporter-based methods include ab initio modeling and homology mod-

eling. Ab initio modelling generates the 3D structure of the transport protein from 

its primary sequence, while homology modeling uses structural information of a 

template protein with mutual sequence similarity (Chang and Swaan 2006). 

For the modeling of active carrier-mediated transport most often the saturable 

Michaelis–Menten kinetic is used. The input parameters Vmax, the maximum reac-

tion velocity, and km, the substrate concentration with 50% Vmax (Michaelis con-

stant) are determined in vitro. While at low concentrations the rate of transport 

increases almost linear, at high concentrations enzyme saturation occurs resulting 

in a constant maximum transport rate.  
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2.2.5 Gut wall metabolism 

For in silico predictions of gut wall metabolism, an allometric scale-up approach is 

followed if in vitro data is available. For example, the slice weight and organ weight 

are used for the scaling of experimental data from precision-cut intestinal slices to 

the in vivo situation. Alternative approaches include scaling of the information of 

specific enzymes determined for hepatic metabolism to the gut wall metabolism. 

Therefore, information about the kinetics of the specific enzymatic reaction, en-

zyme abundance in the in vitro assay used for the determination of the kinetics of 

the enzymatic reaction and enzyme scaling factors (e.g. derived from im-

munoquantified enzyme expression levels in intestine and liver) are needed 

(Heikkinen et al. 2012). With these approaches, the intrinsic intestinal clearance is 

determined and can further be used to calculate the fraction of drug escaping gut 

wall metabolism. Using a similar approach to the well-stirred liver model, the frac-

tion of drug escaping gut wall metabolism (𝐹𝑔) can be described with the 𝑄𝑔𝑢𝑡-

model: 

𝐹𝑔 =
𝑄𝑔𝑢𝑡

𝑄𝑔𝑢𝑡+𝑓𝑢,𝑔∗𝐶𝐿𝑢𝑖𝑛𝑡,𝑔
                 (13.10) 

where 𝑓𝑢,𝑔 is the fraction of unbound drug in the enterocytes and 𝐶𝐿𝑢𝑖𝑛𝑡,𝑔 is the 

intrinsic metabolic clearance in the gut (Yang et al. 2007). 𝑄𝑔𝑢𝑡  can further be de-

scribed as: 

𝑄𝑔𝑢𝑡 =
𝑄𝑣𝑖𝑙𝑙𝑖∗𝐶𝐿𝑝𝑒𝑟𝑚

𝑄𝑣𝑖𝑙𝑙𝑖+𝐶𝐿𝑝𝑒𝑟𝑚
                 (13.11) 

where 𝑄𝑣𝑖𝑙𝑙𝑖  is the villous blood flow and 𝐶𝐿𝑝𝑒𝑟𝑚 is the cellular permeability. Purely 

in silico approaches are used to identify the investigated compound as a substrate 

for specific enzymatic reactions following ligand-based or structure-based ap-

proaches as further described below in Section 12.4.2. 

2.2.6 Dynamic transit models 

Dynamic transit models are dependent on a temporal variable and include mixing 

tank models, the Compartmental Absorption Transit model (CAT) and dispersion 

models.(Yu et al. 1996) With these models it is not only possible to predict the 

fraction of dose absorbed but also to predict the rate of drug absorption which can 
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help in the simulations of plasma concentration profiles and predictions of in vivo 

performance.  

The mixing tank model introduced by Dressman and Fleisher (1986) is based on 

mass balance considerations and suitable for drugs with dissolution-rate limited 

absorption. The model considers the gastrointestinal tract as a single well-stirred 

compartment with uniform drug concentration, in which transit and absorption 

follow first-order kinetics. The drug is administered as bolus and the transport of 

solid and dissolved drug occurs at the same rate. Despite several limitations of the 

model such as no consideration of luminal degradation, gut metabolism or heter-

ogeneity of the gastrointestinal tract, the model could successfully predict the de-

termining factors limiting the absorption of digoxin (dissolution rate) and griseo-

fulvin (solubility). 

The Compartmental Absorption Transit model (CAT) model considers the gastro-

intestinal tract as a series of well-stirred compartments with different volumes and 

flow rates but equal residence time of the drug. For the small intestine, seven com-

partments resulted in the best fit of available literature data.(Yu and Amidon 1999) 

Further modifications of the CAT model included addition of compartments of un-

released drug and undissolved drug, pH-dependent solubility, precipitation, gastric 

and colonic compartments, information of effective absorptive surface area and 

drug transporter processes resulting in the Advanced Compartmental Absorption 

Transit (ACAT™), the basis of the commercial software GastroPlus™ (Simulations 

Plus, US). (Kuentz 2008) 

The current version of the ACAT™ model considers ionisation effects on solubility 

and permeability, paracellular permeability, nanoparticles effects, food effects, 

bile salt-enhanced solubility, precipitation and active transport. It can be used for 

immediate release, delayed release and controlled release formulations. Apart 

from human gut physiology, physiological gut models are available for a variety of 

species (dog, rat, mouse, rhesus monkey, cynomolgus monkey, minipig, rabbit and 

cat). Drug dissolution can be predicted with several dissolution models (e.g., Hintz 

and Johnson equation, Wang and Flanagan equation, Z-Factor Model).(Hintz and 

Johnson 1989; Takano et al. 2006) A similar advanced compartmental absorption 

models is integrated in the SimCYP® software (Certara, Sheffield, UK) under the 

name Advanced Dissolution Absorption Metabolism (ADAM) model. The ADAM 

model uses the Wang and Flanagan equation (described above in Section 2.2.2) as 

default model for drug dissolution (Wang and Flanagan 1999). 

The dispersion models consider the gastrointestinal tract as a continuous single 

tube with constant velocity, dispersion behaviour and concentration profile across 
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the tube diameter and spatially varying properties along the tube (Yu et al. 1996). 

The convection-dispersion equation is used to describe the drug absorption pro-

cess: 

𝜕𝐶

𝜕𝑡
= 𝛼

𝜕2𝐶

𝜕𝑥2 − 𝛽
𝜕𝐶

𝜕𝑥
− 𝛾𝐶                 (13.12) 

where 𝐶 is the concentration, 𝑥 is the axial distance from the stomach, 𝛼 is the 

dispersion coefficient, 𝛽 is the linear flow velocity in the axial direction and 𝛾 is the 

drug absorption rate constant (Ni et al. 1980). With a modified version of this con-

cept, drug absorption in rats and later in humans was successfully predicted 

(Willmann et al. 2003; Willmann et al. 2004). The earlier versions of the absorption 

model of the PBPK software PK‐Sim® (Open Systems Pharmacology) were evolved 

from this model which was later replaced by a twelve compartmental absorption 

model (Willmann et al. 2012). 

3. Distribution 

3.1 In vitro methods 

Plasma Protein Binding (PPB) is an important parameter for the distribution of a 

drug in the body. Highly protein bound drugs are retained in plasma and often less 

prone to distribute into body tissues resulting usually in a low volume of distribu-

tion. In terms of pharmacodynamics, highly protein-bound drugs may not reach 

therapeutic concentrations as usually only the fraction unbound is available for 

receptor or enzyme interaction. Plasma contains 7% proteins of which human se-

rum albumin is the most important protein for drug binding followed by α1-acid 

glycoprotein and lipoproteins (Caldwell and Yan 2014). The preferred method for 

the determination of plasma protein binding is equilibrium dialysis since the 

method is less susceptible to non-specific binding. For classical equilibrium dialysis 

(CED), a regenerated cellulose membrane (cut-off 12-14 kDa) separates two 1 mL 

paired Teflon cells filled with buffer and plasma which are tempered at 37⁰C and 

rotated for a predetermined period (4-12 h) (Caldwell and Yan 2014). Typical meth-

ods used for drug analysis are scintigraphy or LC-MS/MS analysis. Further devel-

opment of the method resulted in the Rapid Equilibrium Dialysis (RED) with faster 

preparation and equilibration times and suitability for higher throughput of sam-

ples. Another method to determine PPB is ultracentrifugation where plasma is 

added to the device followed by centrifugation for 10–20 min at 1000–2000 × g in 

a fixed angle rotor (Caldwell and Yan 2014). The accuracy of this method is limited 
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by the non-specific binding to the filtration apparatus. Additionally, high perfor-

mance affinity chromatography can be used to determine PPB using immobilized 

albumin or α1-acid glycoprotein as stationary phase and correlate chromato-

graphic retention to the percentage of drug binding to albumin or α1-acid glyco-

protein (Lambrinidis et al. 2015). Longer chromatographic retention time indicates 

higher percentage of protein binding. 

Similar to PPB, drug partition into red blood cells (RBC), the major cellular compo-

nent of blood, can influence drug distribution. For the in vitro determination of 

RBC partitioning, radiolabelled or unlabelled drug is mixed with whole blood fol-

lowed by centrifugal separation of RBC and plasma and the determination of drug 

concentration in both compartments (Hinderling 1984). Measurements at several 

time points also permit to determine the rate of RBC partitioning. 

In vitro tissue distribution can be assessed using tissue homogenates, tissue slices 

or isolated tissue components. After an incubation period of the tissue with the 

investigated drug, the tissue-to-medium distribution coefficient can be calculated 

using the separately measured drug concentration in tissue and medium (Ballard 

et al. 2003). While tissue homogenates are the most widely used method, the dis-

ruption of cellular integrity can result in an overestimation of tissue distribution 

for drugs mainly restricted to the extracellular space.   

3.2 In silico methods 

Computational models to predict plasma protein binding have been developed us-

ing ligand-based approaches with quantitative structure activity relationships and 

structure-based approaches focusing on the crystal structure of drug-protein com-

plexes. Due to the predominant role of human serum albumin in PPB, most ap-

proaches only focus on albumin and only recently advances for α1-acid glycopro-

tein have been made. Due to the different binding sites of albumin, global models 

for a broad range of compounds are challenging and in the beginning in silico mod-

els focused on similar compounds using the same binding site. Based on training 

sets of compounds and multivariate statistical analysis, lipophilicity (logP), elec-

tronic properties, acidity, shape modulating factors, polarity terms and fraction 

ionised (cationic and anionic) were identified as important predictive factors in lig-

and-based in silico models (Lambrinidis et al. 2015).  

Drug distribution in the body has been described by different mechanistic models. 

The steady state volume of distribution (𝑉𝑠𝑠) describes the extent of tissue distri-

bution and can be defined as:  
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𝑉𝑠𝑠 = (∑ 𝑉𝑡 ∗ 𝑃𝑡:𝑝) + (𝑉𝑒 ∗ 𝐸: 𝑃) + 𝑉𝑃               (13.13) 

where 𝑉𝑡 is the fractional volume of a tissue, 𝑃𝑡:𝑝 is the plasma:partition coeffi-

cient, 𝑉𝑒 is the fractional volume of erythrocytes, 𝐸: 𝑃 is the erythrocyte:plasma 

ratio and 𝑉𝑃 is the plasma volume.(Poulin and Theil 2002) The erythrocyte:plasma 

ratio can be described as: 

𝐸: 𝑃 = [𝐵: 𝑃 − (1 − 𝐻𝑡)]/𝐻𝑡                (13.14) 

where 𝐵: 𝑃 is the blood:plasma ratio which can be determined in vitro (as de-

scribed above in Section 12.3.1) and 𝐻𝑡 is the haematocrit (volume percentage of 

red blood cells in blood) (Poulin and Theil 2002).  

Literature data is available for the different body volumes (e.g., lung, brain, heart, 

liver, bone, kidney, muscle, skin, adipose) in Equation 13 and for the estimation of 

tissue:plasma partition coefficients the following in silico models can be used.  

An in silico model developed by Poulin and Theil (2002) and modified by 

Berezhkovskiy (2004) accounts for plasma and tissue being composed of neutral 

lipids, phospholipids and water and only the unionised fraction of the drug perme-

ating the membrane. This resulted in the following description of the tissue-parti-

tion coefficient, 𝑃𝑡:𝑝, for non-adipose tissue: 

𝑃𝑡:𝑝 =
[𝑃𝑜:𝑤(𝑉𝑡,𝑛𝑙+0.3𝑉𝑡,𝑝ℎ)+0.7𝑉𝑡,𝑝ℎ+

𝑉𝑡,𝑤
𝑓𝑢𝑡

]

[𝑃𝑜:𝑤(𝑉𝑝,𝑛𝑙+0.3𝑉𝑝,𝑝ℎ)+0.7𝑉𝑝,𝑝ℎ+(
𝑉𝑝,𝑤

𝑓𝑢𝑝
)]

              (13.15) 

where 𝑃𝑜:𝑤 is the n-octanol:buffer partition coefficient of the non-ionized species, 

𝑉 is the fractional tissue volume content of neutral lipids (𝑛𝑙), phospholipids (𝑝ℎ), 

and water (𝑤) in either tissue (𝑡) or plasma (𝑝) and 𝑓𝑢 is the fraction unbound. The 

fraction unbound in tissue, 𝑓𝑢𝑡, can mechanistically be estimated (Eq. 13.16) from 

the fraction unbound in plasma according to  

𝑓𝑢𝑡 =
1

[
1−𝑓𝑢𝑝

𝑓𝑢𝑝
]∗0.5

                 (13.16) 

as described by Poulin and Theil (2000). 

Further models developed by Rodgers and Rowland differentiated between intra 

and extracellular space and added an acidic phospholipid fraction in tissues result-

ing in an improvement of the prediction for strong bases.(Rodgers et al. 2005a, b; 

Rodgers and Rowland 2006, 2007) Additionally to passive permeability of the un-
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ionised fraction of the drug, a further modification of the model includes mem-

brane permeability of the ionized fraction and is integrated in the SimCyp® simula-

tor (Certara, Sheffield, UK). 

4. Metabolism 

Drug metabolism or biotransformation of orally administered drugs occurs mainly 

in the small intestine (as described above in Section 2.1.5) and liver. Physicochem-

ical characteristics of drugs such as a high lipophilicity as indicated by a high logD7.4 

were shown to be associated with high metabolic clearance (van de Waterbeemd 

and Gifford 2003). A variety of metabolizing enzymes is available to facilitate the 

excretion of xenobiotics by increasing their aqueous solubility. Enzymatic biotrans-

formation can be divided in Phase 1 and Phase 2 metabolism. Phase 1 reactions 

are reactions of functionalisation (e.g. oxidation, hydrolysis or reduction) that in-

troduce polar functional groups to molecules resulting in either facilitated excre-

tion or further metabolism (Westhouse and Car 2007). In Phase 2 reactions, large 

polar molecules (e.g. glucuronate, acetate and sulfate) are conjugated to drug mol-

ecules further resulting in an increased aqueous solubility to facilitate excretion 

(Westhouse and Car 2007). 

4.1 In vitro methods 

Different in vitro assays are available to predict hepatic drug metabolism. Recom-

binant CYP enzymes expressed in different cell types can be used to identify the 

specific CYP enzymes involved in the metabolism of the investigated drug. Addi-

tionally, incubation of these recombinant CYP enzymes with the investigated com-

pound provides information about the metabolic enzyme activity per mass of pro-

tein which can further be scaled up to the in vivo situation.  

The homogenization of liver and subsequent centrifugation at 1000 g and 9000 g, 

separates the pellet with nuclei and mitochondria, respectively from the superna-

tant with cytosolic and microsomal enzymes (Richardson et al. 2016). The super-

natant is the hepatic S9 pool and can be used as in vitro system for investigating 

hepatic metabolism. An additional ultracentrifugation step at 100000 g results in 

the separation of the cytosol subcellular fraction in the supernatant and the mi-

crosomal subcellular fractions in the pellet (Richardson et al. 2016). The human 

liver microsomes are commonly used in the pharmaceutical industry due to their 

richness of metabolic Cytochrome P450 enzymes, low cost and ease in use (Di et 
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al. 2012b). However, metabolic pathways in the assay can be incomplete since the 

present enzymes are limited to enzymes contained in endoplasmic reticulum 

(Phase 1 reactions) (Richardson et al. 2016). 

Primary hepatocytes, taken from living tissue (e.g. biopsy material), are grown in 

vitro and represent more closely the in vivo situation due to the full range of met-

abolic enzymes (e.g., aldehyde oxidase and monoamine oxidase), cofactors and 

membrane transporters (Di et al. 2012b). Since it is not possible to culture primary 

hepatocytes indefinitely, cryopreservation of hepatocytes was introduced. This re-

sulted in constant availability of the in vitro assay in the drug discovery setting by 

retaining the full activity during storage of the hepatocytes in liquid nitrogen for 

one year. When comparing assays of liver microsomes with hepatocytes, intrinsic 

clearance of compounds metabolised over non-CYP pathways was faster in 

hepatocytes (Di et al. 2012b). On the other hand, the intrinsic clearance of drugs 

with rate-limiting hepatic uptake was faster in microsomes (Di et al. 2012b). 

4.2 In silico methods 

For the prediction of hepatic metabolic clearance in vivo, the previously mentioned 

in vitro assays (S9 pool, liver microsomes, hepatocytes) can be scaled to the in vivo 

situation. For example, the intrinsic clearance of the unbound fraction of the drug 

in a human liver microsome assay is given in μl/min/mg protein and can be scaled 

up to the in vivo situation based on information about the level of microsomal pro-

teins per gram of liver and liver weight. The hepatic clearance is also dependent 

on the amount of drug that comes into contact with the hepatic metabolizing en-

zymes that can further depend on e.g. hepatic blood flow or fraction unbound in 

blood. For the hepatic clearance, 𝐶𝐿ℎ, most often the well-stirred liver model is 

used: 

𝐶𝐿ℎ =
𝑄ℎ∗𝑓𝑢𝑏∗𝐶𝐿𝑖𝑛𝑡

𝑄ℎ+𝑓𝑢𝑏∗𝐶𝐿𝑖𝑛𝑡
                 (13.17) 

where 𝑄ℎ  is the hepatic blood flow, 𝑓𝑢𝑏 is the fraction unbound in blood and 𝐶𝐿𝑖𝑛𝑡 

is the intrinsic hepatic clearance (Pang and Rowland 1977). Assumptions behind 

this model are an instant equilibrium between hepatocytes and adjacent blood 

and a homogenous drug distribution in the liver. In contrast, the parallel tube 

model considers that the drug concentration decreases along the direction of the 

blood flow (Pang and Rowland 1977). 

For the prediction of drug metabolism only with in silico methods, ligand-based 

approaches or structure-based approaches have been used especially for CYP en-

zymes. Ligand-based approaches, such as QSAR, pharmacophore-based algorithms 
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or shape-focused models, consider the chemical structure and properties of the 

drugs while structure-based approaches also model the interaction between the 

investigated substrate and the metabolic enzyme (Andrade et al. 2014; de Groot 

2006).  

5. Excretion 

The removal of unaltered drug and its metabolites from the body is known as ex-

cretion. Apart from the rate of metabolism, drug clearance from blood is influ-

enced by the biliary and urinary excretion rate of unchanged drug. Drug elimina-

tion occurs mainly via the highly perfused primary eliminating organs liver and 

kidney and is dependent on the physicochemical and structural characteristics of 

the drugs. Lipophilic drugs with a high molecular weight are often associated with 

biliary excretion (Ghibellini et al. 2006). 

Drug excretion into urine via the kidney, known as renal clearance, is a complex 

process involving passive glomerular filtration, active tubular secretion, passive 

and active re-absorption (Paine et al. 2010). If the drug is only cleared by filtration, 

the renal clearance equals the mathematical product of fraction unbound and glo-

merular filtration rate (fu × GFR). If the renal clearance exceeds this mathematical 

product, the drug may be a substrate for active tubular secretion by transporters. 

If the renal clearance is inferior to this mathematical product, it can be assumed 

that the drug gets reabsorbed. The importance of renal elimination is highlighted 

by the fact that 32% of the top 200 prescribed drugs in the United States in 2010 

were at least partially excreted unchanged in urine (≥25%) (Morrissey et al. 2013).  

 
5.1 In vitro methods 

Several in vitro methods can be used to study biliary excretion: sandwich-cultured 

hepatocytes, suspended hepatocytes, vectoral transport using polarized cell lines, 

single-cell expression systems and membrane vesicles (Ghibellini et al. 2006).  

Sandwich-cultured hepatocytes, from rat or human origin, have the advantage 

that basolateral uptake and canalicular efflux transport can be studied and meta-

bolic functions are retained (Ghibellini et al. 2006). In contrast to the convention-

ally cultured hepatocytes, the culturing of hepatocytes between two layers of 

gelled collagen enhances cell viability and allows the formation of functional bile 
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canalicular networks and polarized excretory function (Swift et al. 2010). Sus-

pended hepatocytes are relatively cheap, easy-to-handle and can be used for up 

to 4 h (Elaut et al. 2006). Their use is limited to the investigation of uptake mech-

anisms and metabolism since it is not possible to discriminate canalicular excretion 

from sinusoidal efflux (Swift et al. 2010). Cell lines (e.g, MDCK), transfected with 

transporter proteins such as multidrug resistance-associated protein 2 (MRP2), or-

ganic anion transporting polypeptide (OATP) 1B1and/or 1B3 and grown on a per-

meable membrane, are used to determine the contribution of an individual 

transport protein, identify driving forces and identify inhibitors (Ghibellini et al. 

2006). While the extrapolation to the in vivo situation is difficult as these cell lines 

are less representative of hepatocytes (different expression levels of transport 

proteins, no complete set of transport proteins, metabolic enzymes and co-fac-

tors), the transfected systems are routinely used in drug development due to their 

ease-in-use and good availability (Ghibellini et al. 2006; Swift et al. 2010). Single-

cell expression systems such as Xenopus laevis oocytes can transiently express 

membrane transporters and channels following the injection of their cRNA (Bröer 

2010). These expression systems are mainly used to study the mechanism of 

transport and the effect of genetic diseases (Ghibellini et al. 2006). Inside-out 

plasma membrane vesicles from cell lines (e.g. insect or mammalian cells) trans-

fected with specific membrane proteins were used to study polymorphisms and 

substrate specificity of efflux transporters (Ghibellini et al. 2006). For insect cells, 

the modification of the membrane composition (addition of cholesterol) results in 

a similar transporter function to mammalian cells (Caldwell and Yan 2014). 

In terms of renal excretion different in vitro experiments can be used for the pro-

cesses of passive tubular reabsorption and active tubular secretion and reabsorp-

tion. For passive tubular permeability, similar in vitro assays as for intestinal per-

meability are used with cell lines such as LLC-PK1, MDCK and Caco-2 (Scotcher et 

al. 2016a). The proximal tubule cell line, LLC-PK1, derived from pig (Sus scrofa) kid-

ney, is grown on permeable filter membranes and has been used for transepithe-

lial transport studies investigating the renal disposition of drugs. Apart from the 

formation of polarized cell monolayers, this cell line has the benefit of expressing 

endogenous transport proteins (P-gp, MRP2, BCRP) (Kuteykin-Teplyakov et al. 

2010; Takada et al. 2005). Recently, the bidirectional epithelial permeation of 

twenty compounds was studied in this cell line and good correlations to human 

renal clearance of drugs were obtained after upscaling of the in vitro parameters 

(Kunze et al. 2014). For anionic drugs, however, clearance was underpredicted due 

to restricted secretion in LLC-PK1 cells indicative of limited activity of organic anion 

transporters (Kunze et al. 2014). To closer mimic the conditions in the kidney, the 

apical to basolateral pH gradient should be considered in the experimental design 
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and the experimental results should be scaled by the corresponding tubular sur-

face area (Scotcher et al. 2016b).  

For active tubular secretion and reabsorption, similar in vitro techniques are used 

as for metabolism or biliary excretion. The range of in vitro assays includes mem-

brane vesicles, transfected cells (e.g. Organic Anion Transporter 1-expressing Chi-

nese Hamster Ovary cells (CHO-OAT1), Organic Anion Transporter 3-expressing 

Human Embryonic Kidney cells 293 (HEK293-OAT3)), immortalised kidney cell 

lines, primary cultured renal tubule cells and kidney slices (Scotcher et al. 2016a). 

Human kidney slices can be used to investigate drug uptake at the basolateral 

membrane but lack information about tubular reabsorption (Watanabe et al. 

2011). Their use is restricted due to the limited tissue availability but, if available, 

complex studies with multiple transporter substrates or inhibitors can be per-

formed with the full set of endogenous transporters (Scotcher et al. 2016a). 

5.2 In silico methods 

Considering biliary excretion, several in silico models have been developed based 

on QSAR and compound data of in vivo rat biliary excretion. One of these models 

was developed using principal component regression analysis based on rat biliary 

excretion data from 56 compounds and 2D molecular descriptors which revealed 

hydrophobicity (cLogD) as most important factor for the prediction of biliary ex-

cretion (Chen et al. 2010). Another model used similar data from 50 compounds 

and identified a correlation of polar surface area, presence of a carboxylic acid 

moiety and free energy of aqueous solvation with biliary excretion (Luo et al. 

2010). A model, based on 217 compounds, was developed using a simple regres-

sion tree model with the Classification and Regression Trees (CART) algorithm and 

revealed higher biliary excretion for relatively hydrophilic and large compounds, 

especially when anionic or cationic (Sharifi and Ghafourian 2014). 

A variety of in silico approaches have been used for the prediction of renal excre-

tion. Allometric models were developed for the prediction of renal clearance in 

men from animal data (Mahmood 1998; Paine et al. 2011; Lave et al. 2009). Ap-

propriate upscaling of the in vitro result to the in vivo situation is necessary, as for 

in vitro assays (Kunze et al. 2014). In silico models focusing on the likelihood or 

extent of renal clearance were developed based on QSAR approaches using Volsurf 

descriptors (2D numerical molecular descriptors calculated from 3D interaction 

energy grid maps) or physicochemical and structural descriptors (e.g. log D, H-

bond donors, ionisation potential) (Doddareddy et al. 2006; Manga et al. 2003; 

Dave and Morris 2015). The rate of renal clearance was predicted using in silico 
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models developed with different statistical tools such as Partial Least Squares (PLS) 

and Random Forests (RF) based on a human renal clearance data set of 349 drugs 

with active secretion and net re-absorption (Paine et al. 2010).  

A mechanistic kidney model has been developed based on various physiological 

and anatomical parameters (e.g. nephron size and number, number of proximal 

tubular cells per gram of kidney, flow rates of tubular fluid and urine and pH values 

in tubular cells/fluid) and is incorporated in the SimCyp® simulator (Certara, Shef-

field, UK) (Jamei et al. 2009). In this model the nephron is divided into eight seg-

ments with three compartments (tubular fluid, cell mass and blood space). The 

processes integrated in the model include passive permeability across basal and 

apical membranes of each cell compartment, uptake and efflux transport across 

the basal and apical membranes of each proximal tubular cell compartment, met-

abolic clearance in proximal tubular cell compartments and bypass of a fraction of 

the renal blood flow (no passage through glomerulus, the Loop of Henle and sub-

sequent segments) (Neuhoff et al. 2013). The input needed in terms of drug prop-

erties are information about drug binding and ionisation, passive permeability and 

transporter kinetics. The advantage of such a mechanistic model is that interindi-

vidual variability (demographics, gender, disease) can be integrated.  

6. Physiologically-based pharmacokinetic models 

The various previously presented in vitro and in silico ADME tools can be used sep-

arately to consider each of the ADME parameters. Linking the information from 

the different in vitro assays and in silico predictions offers the opportunity to pre-

dict in vivo performance, such as plasma concentration profiles, drug concentra-

tions in specific compartments of the body and to investigate Drug-Drug interac-

tions. PBPK models were built for this purpose and consider the processes of 

absorption, distribution, metabolism and excretion of a drug mechanistically (Fig-

ure 13.3).  

Please insert Figure 13.3 here 

For drug absorption, the complex compartmental absorption transit models (as 

described above in Section 2.2.6) are used in PBPK models together with infor-

mation about various physiological parameters such as gastrointestinal transit 

times, luminal fluid volumes, luminal fluid pHs, regional differences in en-

zyme/transporter density and surface area of the gastrointestinal tract (Jamei et 

al. 2009). Drug release from different pharmaceutical formulation types such as 
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controlled or modified release systems, enteric-coated granules or tablets and sus-

pensions can also be considered.  

Regarding drug distribution, PBPK models consider the whole body using predicted 

tissue:partition coefficients (as described above in Section 3.2) and literature data 

from physiological parameters such as body and organ size, blood flow rates, tissue 

and blood composition. Tissues include for example bone, brain, gut, heart, kid-

ney, liver, lung, pancreas, muscle, skin, spleen and adipose tissue which are usually 

defined as perfusion-limited tissues. A modification to permeability-limited tissues 

and integration of active transporter processes using experimental data of 

transport kinetics is possible. This mechanistic approach allows tracking of the 

drug concentration in a specific tissue. If such a complex distribution model is not 

needed, simple compartmental or minimal pharmacokinetic models can be used. 

Metabolism and excretion can be integrated at the enzymatic level (metabolizing 

enzymes and transporters) in the metabolizing and/or eliminating organs which 

can be considered as perfusion- or permeability-limited tissues (Kostewicz et al. 

2014a). For metabolizing enzymes or transporters, the input data required in-

cludes in vitro information about enzyme kinetics (e.g., Vmax and km) which is scaled 

to the whole organ with literature information about enzymatic expression in spe-

cific organs and organ size. It is also possible to use other in vitro approaches such 

as hepatocytes with appropriate scaling factors as described above in Section 4.2.  

Apart from physiological data based on the population, additional input data in-

cludes drug-dependent parameters, formulation-dependent parameters and in-

formation about the design of the virtual trial. For several drug-dependent param-

eters, it is also possible to use in silico predictions as input information instead of 

experimental data (e.g., logP, permeability, PPB, RBC partitioning, aqueous and 

bile micelle mediated solubility) (Fotaki 2009). As more in vitro, preclinical or clin-

ical data becomes available in the drug discovery process, these data can be used 

to refine the existing model. PBPK models can also be coupled with pharmacody-

namic models to study the relevance of pharmacokinetic changes on therapeutic 

effects. In recent years, PBPK models were constantly improved by integrating 

more physiological processes, increasing the mechanistic background of the model 

and updating physiological information with newly available literature data such 

as gastrointestinal transit times, demographics and expression of transporters and 

metabolizing enzymes (Rostami-Hodjegan 2012). A main advantage of PBPK mod-

els is the integration of population variability in the model to investigate drug prod-

uct performance in populations that are not usually represented in clinical trials. 

For example, in the SimCyp® simulator (Certara, Sheffield, UK), default populations 
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include different disease states (obesity, liver cirrhosis, renal impairment, rheu-

mathoid arthritis), ethnicities (Chinese, Japanese, Caucasian), pregnancy and age 

groups (paediatric, geriatric) (Jamei et al. 2009).  

7. Conclusion 

Many interrelated processes contribute to determining the pharmacokinetic pro-

file of a drug. A variety of useful in vitro and in silico methods to predict single 

ADME parameters is available to predict specific processes. The choice of the in 

vitro and in silico method depends on the drug discovery stage, the drug properties 

and the available compound data. Current approaches aim to integrate available 

in silico tools and experimental data from in vitro assays to predict drug plasma 

profiles using PBPK modeling. With the integration of physiological data from dif-

ferent populations in PBPK models, it is also possible to predict pharmacokinetics 

in special populations and to estimate interindividual variability. All these tools 

contribute to the reduction of drug attrition rate in later stages of drug develop-

ment, to the minimization of time and costs in drug development and to the re-

duction of clinical studies. Further advancements are expected when PBPK models 

are set up in very early stages of drug development and confidence in the model 

grows by further integrating in vitro, preclinical and clinical data as it becomes 

available.  
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Table 13.1: Overview of different in vitro permeability assays (Alqahtani et al. 2013; Caldwell and Yan 

2014) 

Permeability 

assay 

PAMPA Caco-2 MDCK Ussing 

chamber 

In situ 

perfusion 

studies 

Advantages  ↓Costs  

 ↓Experi-
mental 
time 

 Suitable 
for High 
Through-
put 
Screen-
ing 

 Human cell 
lines with 
tight junc-
tions, en-
zyme 
transport-
ers, P-gp 
and multi-
drug re-
sistance 
proteins, 
some 
CYP450 
isoen-
zymes and 
Phase 2 en-
zymes 

 ↓Time 
needed 
for 
cells to 
form a 
polar-
ised 
mono-
layer 
with 
well-
estab-
lished 
tight 
junc-
tions 

 Good 
predic-
tion of 
intestinal 
drug ab-
sorption 

 Influx/ef-
flux 
transport 

 Drug me-
tabolism 

 Assess-
ment of 
regional 
intestinal 
differ-
ences  

 Assess-
ment of 
intestinal 
drug 
transport 
and me-
tabolism 

 Assess-
ment of 
dose-de-
pendent 
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 Suitable 
for High 
Through-
put 
Screening 

(3-5 
days)  

 ↓TEER 
values 

pharma-
cokinet-
ics  

Disadvantages  Consid-
ers only 
passive 
transcel-
lular per-
meabil-
ity of 
com-
pounds  

 Long time 
(ca. 21 
days) to 
form tight 
junc-
tions/ex-
press 
higher 
amount of 
efflux 
transport-
ers 

 Wide vari-
ation with 
passage 
number  

 ↑ Variabil-
ity be-
tween la-
boratories 

 Underesti-
mation of 
paracellu-
lar 
transport 
”tighter” 
tight junc-
tions com-
pared to in 
vivo situa-
tion 

 ↓ Expres-
sion of 
CYP3A en-
zymes  

 Canine 
origin 
(but 
trans-
fection 
with P-
gp, 
MRPs, 
BCRP is 
possi-
ble) 

 Can only 
be used 
for 2-3 h 
due to 
tissue vi-
ability 

 Effect of 
anaes-
thesia 

 Not prac-
tical for 
high 
through-
put 
screen-
ing 

 Overesti-
mation 
of ab-
sorption 
for drugs 
with gut 
wall me-
tabolism 
or accu-
mulation 
in gut 
wall pos-
sible 
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Figure captions 

Figure 13.1: Levels of biorelevant media recommended for the simulation 

of human gastrointestinal fluids during oral formulation development 

(modified from Markopoulos et al. (2015)) 

 

Figure 13.2: Various types of molecular descriptors used for in silico predic-

tion of ADME parameters (modified from Dokoumetzidis et al. (2007)) 
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Figure 13.3: Description of basic elements of physiologically based phar-

macokinetic modeling (PO: per os, IV: intravenous) 
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