298 research outputs found

    Mars Science Helicopter Conceptual Design

    Get PDF
    Robotic planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers, and have more near-surface capability than orbiters. Aerial mobility is a promising possibility for planetary exploration as it reduces the challenges that difficult obstacles pose to ground vehicles. The first use of a rotorcraft for a planetary mission will be in 2021, when the Mars Helicopter technology demonstrator will be deployed from the Mars 2020 rover. The Jet Propulsion Laboratory and NASA Ames Research Center are exploring possibilities for a Mars Science Helicopter, a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). This report describes the conceptual design of Mars Science Helicopters. The design process began with coaxial-helicopter and hexacopter configurations, with a payload in the range of two to three kilograms and an overall vehicle mass of approximately twenty kilograms. Initial estimates of weight and performance were based on the capabilities of the Mars Helicopter. Rotorcraft designs for Mars are constrained by the dimensions of the aeroshell for the trip to the planet, requiring attention to the aircraft packaging in order to maximize the rotor dimensions and hence overall performance potential. Aerodynamic performance optimization was conducted, particularly through airfoils designed specifically for the low Reynolds number and high Mach number inherent in operation on Mars. The final designs show a substantial capability for science operations on Mars: a 31 kg hexacopter that fits within a 2.5 m diameter aeroshell could carry a 5 kg payload for 10 min of hover time or over a range of 5 km

    Hypermethylation of the TGF-β target, ABCA1 is associated with poor prognosis in ovarian cancer patients

    Get PDF
    Background The dysregulation of transforming growth factor-β (TGF-β) signaling plays a crucial role in ovarian carcinogenesis and in maintaining cancer stem cell properties. Classified as a member of the ATP-binding cassette (ABC) family, ABCA1 was previously identified by methylated DNA immunoprecipitation microarray (mDIP-Chip) to be methylated in ovarian cancer cell lines, A2780 and CP70. By microarray, it was also found to be upregulated in immortalized ovarian surface epithelial (IOSE) cells following TGF-β treatment. Thus, we hypothesized that ABCA1 may be involved in ovarian cancer and its initiation. Results We first compared the expression level of ABCA1 in IOSE cells and a panel of ovarian cancer cell lines and found that ABCA1 was expressed in HeyC2, SKOV3, MCP3, and MCP2 ovarian cancer cell lines but downregulated in A2780 and CP70 ovarian cancer cell lines. The reduced expression of ABCA1 in A2780 and CP70 cells was associated with promoter hypermethylation, as demonstrated by bisulfite pyro-sequencing. We also found that knockdown of ABCA1 increased the cholesterol level and promoted cell growth in vitro and in vivo. Further analysis of ABCA1 methylation in 76 ovarian cancer patient samples demonstrated that patients with higher ABCA1 methylation are associated with high stage (P = 0.0131) and grade (P = 0.0137). Kaplan-Meier analysis also found that patients with higher levels of methylation of ABCA1 have shorter overall survival (P = 0.019). Furthermore, tissue microarray using 55 ovarian cancer patient samples revealed that patients with a lower level of ABCA1 expression are associated with shorter progress-free survival (P = 0.038). Conclusions ABCA1 may be a tumor suppressor and is hypermethylated in a subset of ovarian cancer patients. Hypermethylation of ABCA1 is associated with poor prognosis in these patients

    Sumoylation of Hypoxia-Inducible Factor-1α Ameliorates Failure of Brain Stem Cardiovascular Regulation in Experimental Brain Death

    Get PDF
    One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM). RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α) plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1), Ubc9 (the only known conjugating enzyme for the sumoylation pathway) or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem cardiovascular regulatory failure during experimental brain death via upregulation of nitric oxide synthase I/protein kinase G signaling. This information should offer new therapeutic initiatives against this fatal eventuality

    Factors associated with asymptomatic COVID-19 patients in Petaling District, Selangor, Malaysia

    Get PDF
    The rapid spread of the Coronavirus disease 2019 (COVID-19) worldwide has led the World Health Organization to declare COVID-19 outbreak as a pandemic on March 11, 2020. As the local studies on factors leading to the absence or presence of clinical illness among the COVID-19 cases are sparse, the study aims to determine the factors associated with asymptomatic COVID-19 patients in Petaling District, Selangor, Malaysia. Data on COVID-19 patients were extracted from the database of confirmed cases in Petaling District Health Office, Selangor, Malaysia from 3rd February 2020 to 30th April 2020. An asymptomatic laboratory-confirmed case is a person infected with COVID-19 who does not develop any symptoms. The study included socio-demographic variables, the detailed information on clinical manifestations and co-morbidity of the patients. Descriptive and multiple logistic regression analyses were conducted to determine the factors associated with asymptomatic patients. The overall COVID-19 patients in Petaling District were 434. Approximately 70% (n= 292) of the patients were symptomatic while 32.7% (n= 142) were asymptomatic. Multivple logistic regression analyses revealed that factors significantly associated with asymptomatic patients were age below 40 years old (aOR: 1.79, 95% CI 1.11, 2.86), non-Malaysians (aOR: 3.22, 95% CI 1.44, 7.19) and local cases (aOR: 2.51, 95% CI 1.42, 4.42). Gender, ethnicity, co-morbidity and township were not significantly associated with asymptomatic patients. Approximately one-third of COVID-19 patients were asymptomatic and the risk factors identified were younger age, non-Malaysians and local cases. Rigorous epidemiological investigation is helpful in identifying COVID-19 cases among these group of people who are asymptomatic

    Serological Evidence of Subclinical Transmission of the 2009 Pandemic H1N1 Influenza Virus Outside of Mexico

    Get PDF
    Background: Relying on surveillance of clinical cases limits the ability to understand the full impact and severity of an epidemic, especially when subclinical cases are more likely to be present in the early stages. Little is known of the infection and transmissibility of the 2009 H1N1 pandemic influenza (pH1N1) virus outside of Mexico prior to clinical cases being reported, and of the knowledge pertaining to immunity and incidence of infection during April-June, which is essential for understanding the nature of viral transmissibility as well as for planning surveillance and intervention of future pandemics. Methodology/Principal Findings: Starting in the fall of 2008, 306 persons from households with schoolchildren in central Taiwan were followed sequentially and serum samples were taken in three sampling periods for haemagglutination inhibition (HI) assay. Age-specific incidence rates were calculated based on seroconversion of antibodies to the pH1N1 virus with an HI titre of 1: 40 or more during two periods: April-June and September-October in 2009. The earliest time period with HI titer greater than 40, as well as a four-fold increase of the neutralization titer, was during April 26-May 3. The incidence rates during the pre-epidemic phase (April-June) and the first wave (July-October) of the pandemic were 14.1% and 29.7%, respectively. The transmissibility of the pH1N1 virus during the early phase of the epidemic, as measured by the effective reproductive number R(0), was 1.16 (95% confidence interval (CI): 0.98-1.34). Conclusions: Approximately one in every ten persons was infected with the 2009 pH1N1 virus during the pre-epidemic phase in April-June. The lack of age-pattern in seropositivity is unexpected, perhaps highlighting the importance of children as asymptomatic transmitters of influenza in households. Although without virological confirmation, our data raise the question of whether there was substantial pH1N1 transmission in Taiwan before June, when clinical cases were first detected by the surveillance network

    Development of a Surface Plasmon Resonance Biosensor for Real-Time Detection of Osteogenic Differentiation in Live Mesenchymal Stem Cells

    Get PDF
    Surface plasmon resonance (SPR) biosensors have been recognized as a useful tool and widely used for real-time dynamic analysis of molecular binding affinity because of its high sensitivity to the change of the refractive index of tested objects. The conventional methods in molecular biology to evaluate cell differentiation require cell lysis or fixation, which make investigation in live cells difficult. In addition, a certain amount of cells are needed in order to obtain adequate protein or messenger ribonucleic acid for various assays. To overcome this limitation, we developed a unique SPR-based biosensing apparatus for real-time detection of cell differentiation in live cells according to the differences of optical properties of the cell surface caused by specific antigen-antibody binding. In this study, we reported the application of this SPR-based system to evaluate the osteogenic differentiation of mesenchymal stem cells (MSCs). OB-cadherin expression, which is up-regulated during osteogenic differentiation, was targeted under our SPR system by conjugating antibodies against OB-cadherin on the surface of the object. A linear relationship between the duration of osteogenic induction and the difference in refractive angle shift with very high correlation coefficient was observed. To sum up, the SPR system and the protocol reported in this study can rapidly and accurately define osteogenic maturation of MSCs in a live cell and label-free manner with no need of cell breakage. This SPR biosensor will facilitate future advances in a vast array of fields in biomedical research and medical diagnosis

    Small Molecule Amiloride Modulates Oncogenic RNA Alternative Splicing to Devitalize Human Cancer Cells

    Get PDF
    Alternative splicing involves differential exon selection of a gene transcript to generate mRNA and protein isoforms with structural and functional diversity. Abnormal alternative splicing has been shown to be associated with malignant phenotypes of cancer cells, such as chemo-resistance and invasive activity. Screening small molecules and drugs for modulating RNA splicing in human hepatocellular carcinoma cell line Huh-7, we discovered that amiloride, distinct from four pH-affecting amiloride analogues, could “normalize” the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts. Our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF, and decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, and increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulates kinases and up-regulates phosphatases in the signal pathways known to affect splicing factor protein phosphorylation. These amiloride effects of “normalized” oncogenic RNA splicing and splicing factor hypo-phosphorylation were both abrogated by pre-treatment with a PP1 inhibitor. Global exon array of amiloride-treated Huh-7 cells detected splicing pattern changes involving 584 exons in 551 gene transcripts, many of which encode proteins playing key roles in ion transport, cellular matrix formation, cytoskeleton remodeling, and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. Other human solid tumor and leukemic cells, but not a few normal cells, showed similar amiloride-altered RNA splicing with devitalized consequence. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of RNA splicing for cancer therapeutics

    Time for Singapore to Relook Abortion Law

    Get PDF
    Figure S1. Effect of anti-ITGA2 antibody on cell morphology. The AGS cells were treated with a 3 Οg of the anti-ITGA2 antibodies or isotype control antibodies (negative control) for 48 h, and cell morphology was observed at 200X magnification. Data are representative of three independent experiments. (PPTX 1463 kb

    Polygenic risk scores for prediction of breast cancer risk in Asian populations.

    Get PDF
    PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups. METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases). RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk. CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry

    Review on the Modeling of Electrostatic MEMS

    Get PDF
    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices
    corecore