47 research outputs found

    Structure of unbound neutron-rich 9^{9}He studied using single-neutron transfer

    Get PDF
    The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.Comment: Exp\'erience GANIL/SPIRAL1/MUST

    Mass measurements of As, Se and Br nuclei and their implication on the proton-neutron interaction strength towards the N=Z line

    Get PDF
    Mass measurements of the nuclides 69As, 70,71Se, and 71Br, produced via fragmentation of a 124Xe primary beam at the Fragment Separator (FRS) at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1000000. Such high resolving power is the only way to achieve accurate results and resolve overlapping peaks of short-lived exotic nuclei, whose total number of accumulated events is always limited. For the nuclide 69As, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only ten events. For the nuclide 70Se, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of ÎŽm/m=4.0×10−8, with less than 500 events. The masses of the nuclides 71Se and 71Br have been measured with an uncertainty of 23 and 16 keV, respectively. Our results for the nuclides 70,71Se and 71Br are in good agreement with the 2016 Atomic Mass Evaluation, and our result for the nuclide 69As resolves the discrepancy between the previous indirect measurements. We measured also the mass of the molecule 14N15N40Ar (A=69) with a relative accuracy of ÎŽm/m=1.7×10−8, the highest yet achieved with an MR-TOF-MS. Our results show that the measured restrengthening of the proton-neutron interaction (ÎŽVpn) for odd-odd nuclei along the N=Z line above Z=29 (recently extended to Z=37) is hardly evident at the N−Z=2 line, and not evident at the N−Z=4 line. Nevertheless, detailed structure of ÎŽVpn along the N−Z=2 and N−Z=4 lines, confirmed by our mass measurements, may provide a hint regarding the ongoing ≈500 keV discrepancy in the mass value of the nuclide 70Br, which prevents including it in the world average of Ft value for superallowed 0+→0+ÎČ decays. The reported work sets the stage for mass measurements with the FRS Ion Catcher of nuclei at and beyond the N=Z line in the same region of the nuclear chart, including the nuclide 70Br.peerReviewe

    Nuclear astrophysics with radioactive ions at FAIR

    Get PDF
    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, ÎČ-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes

    Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains

    Get PDF
    The proton-unbound argon and chlorine isotopes have been studied by measuring trajectories of their decay-in-flight products by using a tracking technique with microstrip detectors. The proton (1p) and two-proton (2p) emission processes have been detected in the measured angular correlations "heavy-fragment"+p and "heavy-fragment"+p+p, respectively. The ground states of the previously unknown isotopes Cl30 and Cl28 have been observed for the first time, providing the 1p-separation energies Sp of -0.48(2) and -1.60(8), MeV, respectively. The relevant systematics of 1p- and 2p-separation energies have been studied theoretically in the core+p and core+p+p cluster models. The first-time observed excited states of Ar31 allow one to infer the 2p-separation energy S2p of 6(34) keV for its ground state. The first-time observed state in Ar29 with S2p=-5.50(18) MeV can be identified as either a ground state or an excited state according to different systematics

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF
    corecore