134 research outputs found

    The Luminosity Function of Lyman alpha Emitters at Redshift z=7.7

    Full text link
    Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging search for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2" aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. While firm conclusions would need both spectroscopic confirmations and larger surveys to boost the number counts of galaxies, we successfully demonstrate the feasibility of sensitive near-infrared (1.06 um) narrow-band searches using custom filters designed to avoid the OH emission lines that make up most of the sky background.Comment: Published in ApJ, 3 figure

    Neutral Gas Outflows and Inflows in Infrared-Faint Seyfert Galaxies

    Full text link
    Previous studies of the Na I D interstellar absorption line doublet have shown that galactic winds occur in most galaxies with high infrared luminosities. However, in infrared-bright composite systems where a starburst coexists with an active galactic nucleus (AGN), it is unclear whether the starburst, the AGN, or both are driving the outflows. The present paper describes the results from a search for outflows in 35 infrared-faint Seyferts with 10^9.9 < L_IR/L_sun < 10^11, or, equivalently, star formation rates (SFR) of ~0.4 -- 9 solar masses per year, to attempt to isolate the source of the outflow. We find that the outflow detection rates for the infrared-faint Seyfert 1s (6%) and Seyfert 2s (18%) are lower than previously reported for infrared-luminous Seyfert 1s (50%) and Seyfert 2s (45%). The outflow kinematics of infrared-faint and infrared-bright Seyfert 2 galaxies resemble those of starburst galaxies, while the outflow velocities in Seyfert 1 galaxies are significantly larger. Taken together, these results suggest that the AGN does not play a significant role in driving the outflows in most infrared-faint and infrared-bright systems, except the high-velocity outflows seen in Seyfert 1 galaxies. Another striking result of this study is the high rate of detection of inflows in infrared-faint galaxies (39% of Seyfert 1s, 35% of Seyfert 2s), significantly larger than in infrared-luminous Seyferts (15%). This inflow may be contributing to the feeding of the AGN in these galaxies, and potentially provides more than enough material to power the observed nuclear activity over typical AGN lifetimes.Comment: 17 pages, 12 figures, published in ApJ (article updated 12/30/09

    Searching for z~7.7 Lyman Alpha Emitters in the COSMOS Field with NEWFIRM

    Full text link
    The study of Ly-alpha emission in the high-redshift universe is a useful probe of the epoch of reionization, as the Ly-alpha line should be attenuated by the intergalactic medium (IGM) at low to moderate neutral hydrogen fractions. Here we present the results of a deep and wide imaging search for Ly-alpha emitters in the COSMOS field. We have used two ultra-narrowband filters (filter width of ~8-9 {\deg}A) on the NEWFIRM camera, installed on the Mayall 4m telescope at Kitt Peak National Observatory, in order to isolate Ly-alpha emitters at z = 7.7; such ultra-narrowband imaging searches have proved to be excellent at detecting Ly-alpha emitters. We found 5-sigma detections of four candidate Ly-alpha emitters in a survey volume of 2.8 x 10^4 Mpc^3 (total survey area ~760 arcmin^2). Each candidate has a line flux greater than 8 x 10^-18 erg s^-1 cm^-2. Using these results to construct a luminosity function and comparing to previously established Ly-alpha luminosity functions at z = 5.7 and z = 6.5, we find no conclusive evidence for evolution of the luminosity function between z = 5.7 and z = 7.7. Statistical Monte Carlo simulations suggest that half of these candidates are real z = 7.7 targets, and spectroscopic follow-up will be required to verify the redshift of these candidates. However, our results are consistent with no strong evolution in the neutral hydrogen fraction of the IGM between z = 5.7 and z = 7.7, even if only one or two of the z = 7.7 candidates are spectroscopically confirmed.Comment: 29 pages, 5 figures, accepted to ApJ (12/11

    Gamma-Ray Studies of Blazars: Synchro-Compton Analysis of Flat Spectrum Radio Quasars

    Full text link
    We extend a method for modeling synchrotron and synchrotron self-Compton radiations in blazar jets to include external Compton processes. The basic model assumption is that the blazar radio through soft X-ray flux is nonthermal synchrotron radiation emitted by isotropically-distributed electrons in the randomly directed magnetic field of outflowing relativistic blazar jet plasma. Thus the electron distribution is given by the synchrotron spectrum, depending only on the Doppler factor δD\delta_{\rm D} and mean magnetic field BB, given that the comoving emission region size scale R_b^\prime \lesssim c \dD t_v/(1+z), where tvt_v is variability time and zz is source redshift. Generalizing the approach of Georganopoulos, Kirk, and Mastichiadis (2001) to arbitrary anisotropic target radiation fields, we use the electron spectrum implied by the synchrotron component to derive accurate Compton-scattered γ\gamma-ray spectra throughout the Thomson and Klein-Nishina regimes for external Compton scattering processes. We derive and calculate accurate γ\gamma-ray spectra produced by relativistic electrons that Compton-scatter (i) a point source of radiation located radially behind the jet, (ii) photons from a thermal Shakura-Sunyaev accretion disk and (iii) target photons from the central source scattered by a spherically-symmetric shell of broad line region (BLR) gas. Calculations of broadband spectral energy distributions from the radio through γ\gamma-ray regimes are presented, which include self-consistent γγ\gamma\gamma absorption on the same radiation fields that provide target photons for Compton scattering. Application of this baseline flat spectrum radio/γ\gamma-ray quasar model is considered in view of data from γ\gamma-ray telescopes and contemporaneous multi-wavelength campaigns.Comment: Accepted by ApJ. 22 pages, 12 figures, 2 tables. Minor revisions to figures and tex

    “Can you see me?” videoconferencing and eating disorder risk during COVID-19: anxiety, impairment, and mediators

    Get PDF
    Objective: The use of videoconferencing has increased during the pandemic, creating prolonged exposure to self-image. This research aimed to investigate whether eating disorder (ED) risk was associated with videoconferencing performance for work or study and to explore whether the use of safety behaviors and self-focused attention mediated the relationship between ED risk and perceived control over performance anxiety, impaired engagement, or avoidance of videoconferencing for work or study. Method: In 2020, an online survey was distributed within Australia to those aged over 18 years via academic and social networks, measuring: use of videoconferencing for work/study, demographics, ED risk, safety behaviors for appearance concerns, self-focused attention, perceived control over performance anxiety, perceived engagement impairment, and avoidance of videoconferencing. A total of 640 participants (77.3% female, Mage = 26.2 years) returned complete data and were included in analyses. Results: 245 participants (38.7%) were considered at-risk for EDs (SCOFF > 2). Those at-risk reported significantly more safety behaviors, self-focused attention, impaired engagement, and avoidance, plus lower perceived control over performance anxiety than those not at-risk. Multiple mediation models found the effects of ED risk on control over performance anxiety, impaired engagement, and avoidance were partially mediated by safety behaviors and self-focused attention. Discussion: Our cross-sectional findings suggest videoconferencing for work/study-related purposes is associated with performance anxiety, impaired engagement, and avoidance among individuals at-risk for EDs. Poorer videoconferencing outcomes appear more strongly related to social anxiety variables than ED status. Clinicians and educators may need to provide extra support for those using videoconferencing. Public Significance: Because videoconferencing often involves seeing your own image (via self-view) we wondered whether the appearance concerns experienced by those with eating disorders (EDs) might interfere with the ability to focus on or to contribute to work/study videoconferencing meetings. We found that although those with EDs experience more impairments in their videoconferencing engagement/contribution, these were linked just as strongly to social anxiety as they were to appearance concerns

    Interaction of developmental factors and ordinary stressful life events on brain structure in adults

    Get PDF
    An interplay of early environmental and genetic risk factors with recent stressful life events (SLEs) in adulthood increases the risk for adverse mental health outcomes. The interaction of early risk and current SLEs on brain structure has hardly been investigated. Whole brain voxel-based morphometry analysis was performed in N = 786 (64.6% female, mean age = 33.39) healthy subjects to identify correlations of brain clusters with commonplace recent SLEs. Genetic and early environmental risk factors, operationalized as those for severe psychopathology (i.e., polygenic scores for neuroticism, childhood maltreatment, urban upbringing and paternal age) were assessed as modulators of the impact of SLEs on the brain. SLEs were negatively correlated with grey matter volume in the left medial orbitofrontal cortex (mOFC, FWE p = 0.003). This association was present for both, positive and negative, life events. Cognitive-emotional variables, i.e., neuroticism, perceived stress, trait anxiety, intelligence, and current depressive symptoms did not account for the SLE-mOFC association. Further, genetic and environmental risk factors were not correlated with grey matter volume in the left mOFC cluster and did not affect the association between SLEs and left mOFC grey matter volume. The orbitofrontal cortex has been implicated in stress-related psychopathology, particularly major depression in previous studies. We find that SLEs are associated with this area. Important early life risk factors do not interact with current SLEs on brain morphology in healthy subjects

    Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is associated to affected brain wiring. Little is known whether these changes are stable over time and hence might represent a biological predisposition, or whether these are state markers of current disease severity and recovery after a depressive episode. Human white matter network ("connectome") analysis via network science is a suitable tool to investigate the association between affected brain connectivity and MDD. This study examines structural connectome topology in 464 MDD patients (mean age: 36.6 years) and 432 healthy controls (35.6 years). MDD patients were stratified categorially by current disease status (acute vs. partial remission vs. full remission) based on DSM-IV criteria. Current symptom severity was assessed continuously via the Hamilton Depression Rating Scale (HAMD). Connectome matrices were created via a combination of T1-weighted magnetic resonance imaging (MRI) and tractography methods based on diffusion-weighted imaging. Global tract-based metrics were not found to show significant differences between disease status groups, suggesting conserved global brain connectivity in MDD. In contrast, reduced global fractional anisotropy (FA) was observed specifically in acute depressed patients compared to fully remitted patients and healthy controls. Within the MDD patients, FA in a subnetwork including frontal, temporal, insular, and parietal nodes was negatively associated with HAMD, an effect remaining when correcting for lifetime disease severity. Therefore, our findings provide new evidence of MDD to be associated with structural, yet dynamic, state-dependent connectome alterations, which covary with current disease severity and remission status after a depressive episode

    Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning

    Get PDF
    Psychiatric disorders show heterogeneous symptoms and trajectories, with current nosology not accurately reflecting their molecular etiology and the variability and symptomatic overlap within and between diagnostic classes. This heterogeneity impedes timely and targeted treatment. Our study aimed to identify psychiatric patient clusters that share clinical and genetic features and may profit from similar therapies. We used high-dimensional data clustering on deep clinical data to identify transdiagnostic groups in a discovery sample (N = 1250) of healthy controls and patients diagnosed with depression, bipolar disorder, schizophrenia, schizoaffective disorder, and other psychiatric disorders. We observed five diagnostically mixed clusters and ordered them based on severity. The least impaired cluster 0, containing most healthy controls, showed general well-being. Clusters 1-3 differed predominantly regarding levels of maltreatment, depression, daily functioning, and parental bonding. Cluster 4 contained most patients diagnosed with psychotic disorders and exhibited the highest severity in many dimensions, including medication load. Depressed patients were present in all clusters, indicating that we captured different disease stages or subtypes. We replicated all but the smallest cluster 1 in an independent sample (N = 622). Next, we analyzed genetic differences between clusters using polygenic scores (PGS) and the psychiatric family history. These genetic variables differed mainly between clusters 0 and 4 (prediction area under the receiver operating characteristic curve (AUC) = 81%;significant PGS: cross-disorder psychiatric risk, schizophrenia, and educational attainment). Our results confirm that psychiatric disorders consist of heterogeneous subtypes sharing molecular factors and symptoms. The identification of transdiagnostic clusters advances our understanding of the heterogeneity of psychiatric disorders and may support the development of personalized treatments
    • …
    corecore