60 research outputs found

    The relationship between magnetic and electrophysiological responses to complex tactile stimuli.

    Get PDF
    Background Magnetoencephalography (MEG) has become an increasingly popular technique for non-invasively characterizing neuromagnetic field changes in the brain at a high temporal resolution. To examine the reliability of the MEG signal, we compared magnetic and electrophysiological responses to complex natural stimuli from the same animals. We examined changes in neuromagnetic fields, local field potentials (LFP) and multi-unit activity (MUA) in macaque monkey primary somatosensory cortex that were induced by varying the rate of mechanical stimulation. Stimuli were applied to the fingertips with three inter-stimulus intervals (ISIs): 0.33s, 1s and 2s. Results Signal intensity was inversely related to the rate of stimulation, but to different degrees for each measurement method. The decrease in response at higher stimulation rates was significantly greater for MUA than LFP and MEG data, while no significant difference was observed between LFP and MEG recordings. Furthermore, response latency was the shortest for MUA and the longest for MEG data. Conclusion The MEG signal is an accurate representation of electrophysiological responses to complex natural stimuli. Further, the intensity and latency of the MEG signal were better correlated with the LFP than MUA data suggesting that the MEG signal reflects primarily synaptic currents rather than spiking activity. These differences in latency could be attributed to differences in the extent of spatial summation and/or differential laminar sensitivity

    The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat <it>Phyllostomus discolor </it>(family: Phyllostomidae).</p> <p>Results</p> <p>The auditory cortical area of <it>P. discolor </it>is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 ÎĽm and a medio-lateral distance of about 7000 ÎĽm on the flattened cortical surface.</p> <p>The auditory cortices of ten adult <it>P. discolor </it>were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons) to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions.</p> <p>Based on neurophysiological and neuroanatomical criteria, the auditory cortex of <it>P. discolor </it>could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only.</p> <p>Conclusion</p> <p>The auditory cortex of <it>P. discolor </it>resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The tonotopically organized posterior ventral field might represent the primary auditory cortex and the tonotopically organized anterior ventral field seems to be similar to the anterior auditory field of other mammals. As most energy of the echolocation pulse of <it>P. discolor </it>is contained in the high-frequency range, the non-tonotopically organized high-frequency dorsal region seems to be particularly important for echolocation.</p

    A Tutorial in Connectome Analysis: Topological and Spatial Features of Brain Networks

    Full text link
    High-throughput methods for yielding the set of connections in a neural system, the connectome, are now being developed. This tutorial describes ways to analyze the topological and spatial organization of the connectome at the macroscopic level of connectivity between brain regions as well as the microscopic level of connectivity between neurons. We will describe topological features at three different levels: the local scale of individual nodes, the regional scale of sets of nodes, and the global scale of the complete set of nodes in a network. Such features can be used to characterize components of a network and to compare different networks, e.g. the connectome of patients and control subjects for clinical studies. At the global scale, different types of networks can be distinguished and we will describe Erd\"os-R\'enyi random, scale-free, small-world, modular, and hierarchical archetypes of networks. Finally, the connectome also has a spatial organization and we describe methods for analyzing wiring lengths of neural systems. As an introduction for new researchers in the field of connectome analysis, we discuss the benefits and limitations of each analysis approach.Comment: Neuroimage, in pres

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF
    High-density scalp EEG recordings are widely used to study whole-brain neuronal networks in humans non-invasively. Here, we validate EEG mapping of somatosensory evoked potentials (SSEPs) in macaque monkeys (Macaca fascicularis) for the long-term investigation of large-scale neuronal networks and their reorganisation after lesions requiring a craniotomy. SSEPs were acquired from 33 scalp electrodes in five adult anaesthetized animals after electrical median or tibial nerve stimulation. SSEP scalp potential maps were identified by cluster analysis and identified in individual recordings. A distributed, linear inverse solution was used to estimate the intracortical sources of the scalp potentials. SSEPs were characterised by a sequence of components with unique scalp topographies. Source analysis confirmed that median nerve SSEP component maps were in accordance with the somatotopic organisation of the sensorimotor cortex. Most importantly, SSEP recordings were stable both intra- and interindividually. We aim to apply this method to the study of recovery and reorganisation of large-scale neuronal networks following a focal cortical lesion requiring a craniotomy. As a prerequisite, the present study demonstrated that a 300-mm2 unilateral craniotomy over the sensorimotor cortex necessary to induce a cortical lesion, followed by bone flap repositioning, suture and gap plugging with calcium phosphate cement, did not induce major distortions of the SSEPs. In conclusion, SSEPs can be successfully and reproducibly recorded from high-density EEG caps in macaque monkeys before and after a craniotomy, opening new possibilities for the long-term follow-up of the cortical reorganisation of large-scale networks in macaque monkeys after a cortical lesion

    Early experiences can alter the size of cortical fields in prairie voles (Microtus ochrogaster).

    No full text
    The neocortex of the prairie vole is composed of three well-defined sensory areas and one motor area: primary somatosensory, visual, auditory areas and the primary motor area respectively. The boundaries of these cortical areas are identifiable very early in development, and have been thought to resist alteration by all but the most extreme physical or genetic manipulations. Here we assessed the extent to which the boundaries of sensory/motor cortical areas can be altered by exposing young prairie voles (Microtus ochrogaster) to a chronic stimulus, high or low levels of parental contact, or an acute stimulus, a single dose of saline, oxytocin (OT), or oxytocin antagonist on the day of birth. When animals reached adulthood, their brains were removed, the cortex was flattened, cut parallel to the pial surface, and stained for myelin to identify the architectonic boundaries of sensory and motor areas. We measured the overall proportion of cortex that was myelinated, as well as the proportion of cortex devoted to the sensory and motor areas. Both the chronic and acute manipulations were linked to significant alterations in areal boundaries of cortical fields, but the areas affected differed with different conditions. Thus, differences in parental care and early exposure to OT can both change cortical organization, but their effects are not identical. Furthermore, the effects of both manipulations were sexually dimorphic, with a greater number of statistically significant differences in females than in males. These results indicate that early environmental experience, both through exposure to exogenous neuropeptides and parental contact, can alter the size of cortical fields
    • …
    corecore