1,008 research outputs found

    You May Have to Do it Again, Rocky! An Experimental Analysis of Bargaining with Risky Joint Profits

    Get PDF
    We present an experimental study of a risky sequential bargaining to model negotiations in risky joint ventures that proceed through multiple stages.Our example is the production of a movie that may give rise to a sequel, so actors and producers negitiate sequentially.We compare the predictions of alternative theoretical approaches to understanding such a game.The game theoretic solution predicts (assuming risk neutrality) that actors are willing to accept wages below their outside option for first films in order to capture the gains from winning lucrative sequel contracts.This prediction is strongly rejected by the data.The data are better explained by either equity theory (equal splits) or by a game theoretic model where actors have uncertain risk aversion.The parameters of the game are calibrated to match data on 99 movies for 1989 available from a case study.

    The agrin gene codes for a family of basal lamina proteins that differ in function and distribution

    Get PDF
    We isolated two cDNAs that encode isoforms of agrin, the basal lamina protein that mediates the motor neuron-induced aggregation of acetylcholine receptors on muscle fibers at the neuromuscular junction. Both proteins are the result of alternative splicing of the product of the agrin gene, but, unlike agrin, they are inactive in standard acetylcholine receptor aggregation assays. They lack one (agrin-related protein 1) or two (agrin-related protein 2) regions in agrin that are required for its activity. Expression studies provide evidence that both proteins are present in the nervous system and muscle and that, in muscle, myofibers and Schwann cells synthesize the agrin-related proteins while the axon terminals of motor neurons are the sole source of agrin

    Polarised Quark Distributions in the Nucleon from Semi-Inclusive Spin Asymmetries

    Get PDF
    We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range 0.0030.0031 GeV2^2. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at Q2Q^2=10 GeV2^2. The polarised uu valence quark distribution, Δuv(x)\Delta u_v(x), is positive and the polarisation increases with xx. The polarised dd valence quark distribution, Δdv(x)\Delta d_v(x), is negative and the non-strange sea distribution, Δqˉ(x)\Delta \bar q(x), is consistent with zero over the measured range of xx. We find for the first moments 01Δuv(x)dx=0.77±0.10±0.08\int_0^1 \Delta u_v(x) dx = 0.77 \pm 0.10 \pm 0.08, 01Δdv(x)dx=0.52±0.14±0.09\int_0^1 \Delta d_v(x) dx = -0.52 \pm 0.14 \pm 0.09 and 01Δqˉ(x)dx=0.01±0.04±0.03\int_0^1 \Delta \bar q(x) dx= 0.01 \pm 0.04 \pm 0.03, where we assumed Δuˉ(x)=Δdˉ(x)\Delta \bar u(x) = \Delta \bar d(x). We also determine for the first time the second moments of the valence distributions 01xΔqv(x)dx\int_0^1 x \Delta q_v(x) dx.Comment: 17 page

    Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations

    Get PDF
    We report all-atom molecular dynamics simulations following adsorption of gold-binding and non-gold-binding peptides on gold surfaces modeled with dispersive interactions. We examine the dependence of adsorption on both identity of the amino acids and mobility of the peptides. Within the limitations of the approach, results indicate that when the peptides are solvated, adsorption requires both configurational changes and local flexibility of individual amino acids. This is achieved when peptides consist mostly of random coils or when their secondary structural motifs (helices, sheets) are short and connected by flexible hinges. In the absence of solvent, only affinity for the surface is required: mobility is not important. In combination, these results suggest the barrier to adsorption presented by displacement of water molecules requires conformational sampling enabled through mobility.Fundação para a Ciência e a Tecnologia (FCT) – Programa Operacional “Ciência , Tecnologia, Inovação” – SFRH/BPD/20555/2004/0GV

    Enantiopure titanocene complexes: direct evidence for paraptosis in cancer cells

    Get PDF
    Tolerated by normal tissues, anti-cancer therapies based on titanium compounds are limited by low efficacy/selectivity and lack of understanding of their mode(s) of action. In vitro antitumour activity and mode of cell death incurred by enantiopure TiCl2{n-C5H4CHEt(2 MeOPh)}2 (abbreviated CpR 2TiCl2) has been investigated. The in vitro anti-tumour activity of CpR 2TiCl2 is selective for cancer cells; in clonogenic assays, (S,S)-CpR 2TiCl2 was twice as effective at inhibiting colony formation than other stereoisomers after 24 h exposure. HPLC, MS and NMR techniques determined hydrolysis of CpR 2TiCl2; data strongly correlate with soluble [CpR 2Ti(OH (OH2)]+ being the biological trigger. Treatment of cells with CpR 2TiCl2 provoked extensive cytoplasmic vacuolization, endoplasmic reticulum (ER) swelling and activation of MAPKinase signal transduction, consistent with ligand-induced paraptosis, type III cell death, which is morphologically distinct from, and independent of apoptosis. Indeed, distinct from cisplatin, CpR 2TiCl2 failed to perturb cell cycle dynamics, induce γH2AX foci or evoke apoptosis in MDA-MB-468 and HCT-116 cells

    An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation

    Get PDF
    The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e− ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts

    Old World Arenaviruses Enter the Host Cell via the Multivesicular Body and Depend on the Endosomal Sorting Complex Required for Transport

    Get PDF
    The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor
    corecore