352 research outputs found
Determination of the observation conditions of celestial bodies with the aid of the DISPO system
The interactive system for determining the observation conditions of celestial bodies is described. A system of programs was created containing a part of the DISPO Display Interative System of Orbit Planning. The system was used for calculating the observatiion characteristics of Halley's comet during its approach to Earth in 1985-86
The local dust foregrounds in the microwave sky: I. Thermal emission spectra
Analyses of the cosmic microwave background (CMB) radiation maps made by the
Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not
predicted by the standard inflationary cosmology. In particular, the power of
the quadrupole moment of the CMB fluctuations is remarkably low, and the
quadrupole and octopole moments are aligned mutually and with the geometry of
the Solar system. It has been suggested in the literature that microwave sky
pollution by an unidentified dust cloud in the vicinity of the Solar system may
be the cause for these anomalies. In this paper, we simulate the thermal
emission by clouds of spherical homogeneous particles of several materials.
Spectral constraints from the WMAP multi-wavelength data and earlier infrared
observations on the hypothetical dust cloud are used to determine the dust
cloud's physical characteristics. In order for its emissivity to demonstrate a
flat, CMB-like wavelength dependence over the WMAP wavelengths (3 through 14
mm), and to be invisible in the infrared light, its particles must be
macroscopic. Silicate spheres from several millimetres in size and carbonaceous
particles an order of magnitude smaller will suffice. According to our
estimates of the abundance of such particles in the Zodiacal cloud and
trans-neptunian belt, yielding the optical depths of the order of 1E-7 for each
cloud, the Solar-system dust can well contribute 10 microKelvin (within an
order of magnitude) in the microwaves. This is not only intriguingly close to
the magnitude of the anomalies (about 30 microKelvin), but also alarmingly
above the presently believed magnitude of systematic biases of the WMAP results
(below 5 microKelvin) and, to an even greater degree, of the future missions
with higher sensitivities, e.g. PLANCK.Comment: 33 pages, 9 figures, 1 table. The Astrophysical Journal, 2009,
accepte
Collisions and drag in debris discs with eccentric parent belts
Context: High-resolution images of circumstellar debris discs reveal
off-centred rings that indicate past or ongoing perturbation, possibly caused
by secular gravitational interaction with unseen stellar or substellar
companions. The purely dynamical aspects of this departure from radial symmetry
are well understood. However, the observed dust is subject to additional forces
and effects, most notably collisions and drag. Aims: To complement the studies
of dynamics, we therefore aim to understand how new asymmetries are created by
the addition of collisional evolution and drag forces, and existing ones
strengthened or overridden. Methods: We augmented our existing numerical code
"Analysis of Collisional Evolution" (ACE) by an azimuthal dimension, the
longitude of periapse. A set of fiducial discs with global eccentricities
ranging from 0 to 0.4 is evolved over giga-year timescales. Size distribution
and spatial variation of dust are analysed and interpreted. The basic impact of
belt eccentricity on spectral energy distributions (SEDs) and images is
discussed.
Results: We find features imposed on characteristic timescales. First,
radiation pressure defines size cutoffs that differ between periapse and
apoapse, resulting in an asymmetric halo. The differences in size distribution
make the observable asymmetry of the halo depend on wavelength. Second,
collisional equilibrium prefers smaller grains on the apastron side of the
parent belt, reducing the effect of pericentre glow and the overall asymmetry.
Third, Poynting-Robertson drag fills the region interior to an eccentric belt
such that the apastron side is more tenuous. Interpretation and prediction of
the appearance in scattered light is problematic when spatial and size
distribution are coupled.Comment: Accepted for publication in A&A, 14 pages, 16 figure
Modeling the HD32297 Debris Disk with Far-IR Herschel Data
HD32297 is a young A-star (~30 Myr) 112 pc away with a bright edge-on debris
disk that has been resolved in scattered light. We observed the HD32297 debris
disk in the far-infrared and sub-millimeter with the Herschel Space Observatory
PACS and SPIRE instruments, populating the spectral energy distribution (SED)
from 63 to 500{\mu}m. We aimed to determine the composition of dust grains in
the HD32297 disk through SED modeling, using geometrical constraints from the
resolved imaging to break degeneracies inherent in SED modeling. We found the
best fitting SED model has 2 components: an outer ring centered around 110 AU,
seen in the scattered light images, and an inner disk near the habitable zone
of the star. The outer disk appears to be composed of grains > 2{\mu}m
consisting of silicates, carbonaceous material, and water ice with an abundance
ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent
with cometary grains, implying the underlying planetesimal population is
dominated by comet-like bodies. We also discuss the 3.7{\sigma} detection of [C
II] emission at 158{\mu}m with the Herschel PACS Spectrometer, making HD32297
one of only a handful of debris disks with circumstellar gas detected.Comment: 11 pages, 4 figures, accepted for publication in The Astrophysical
Journa
Collisional modelling of the debris disc around HIP 17439
We present an analysis of the debris disc around the nearby K2 V star HIP
17439. In the context of the Herschel DUNES key programme the disc was observed
and spatially resolved in the far-IR with the Herschel PACS and SPIRE
instruments. In a first model, Ertel et al. (2014) assumed the size and radial
distribution of the circumstellar dust to be independent power laws. There, by
exploring a very broad range of possible model parameters several scenarios
capable of explaining the observations were suggested. In this paper, we
perform a follow-up in-depth collisional modelling of these scenarios trying to
further distinguish between them. In our models we consider collisions, direct
radiation pressure, and drag forces, i.e. the actual physical processes
operating in debris discs. We find that all scenarios discussed in Ertel et al.
are physically sensible and can reproduce the observed SED along with the PACS
surface brightness profiles reasonably well. In one model, the dust is produced
beyond 120au in a narrow planetesimal belt and is transported inwards by
Poynting-Robertson and stellar wind drag. A good agreement with the observed
radial profiles would require stellar winds by about an order of magnitude
stronger than the solar value, which is not supported, although not ruled out,
by observations. Another model consists of two spatially separated planetesimal
belts, a warm inner and a cold outer one. This scenario would probably imply
the presence of planets clearing the gap between the two components. Finally,
we show qualitatively that the observations can be explained by assuming the
dust is produced in a single, but broad planetesimal disc with a surface
density of solids rising outwards, as expected for an extended disc that
experiences a natural inside-out collisional depletion. Prospects of
discriminating between the competing scenarios by future observations are
discussed.Comment: Astronomy and Astrophysics (accepted for publication). 11 pages, 8
figure
Softwood kraft pulping with polyacrylonitrile fibers
This article presents data on the polyacrylonitrile (PAN) effect upon the elastoplastic and mechanical properties of kraft pulp (unbleached softwood sulphate pulp). In the present research the possibility of obtaining in vitro sulphate pulp together with reinforcing agent of polyacrylonitrile was studied. PAN consumption was varied from 0.05 to 0.20 wt % based on the dry weight of the chips. Micrographs of cellulose samples showed that PAN was distributed on the surface of cellulose fibers in the form of fine spherical shape particles and made it possible to increase the strength of kraft pulp by 15?18% (breaking length was increased from 8,480 up to 9,990 m, breaking strength ?from 93.8 up to 109.5 N, energy absorption at break ?from 76.0 up to 92.6 J/m 2 and folding endurance ?from 7 up to 13 double folds)
An improved model of the Edgeworth-Kuiper debris disk
(Abridged) We access the expected EKB dust disk properties by modeling. We
treat the debiased population of the known transneptunian objects (TNOs) as
parent bodies and generate the dust with our collisional code. The resulting
dust distributions are modified to take into account the influence of
gravitational scattering and resonance trapping by planets on migrating dust
grains as well as the effect of sublimation. A difficulty is that the amount
and distribution of dust are largely determined by sub-kilometer-sized bodies.
These are directly unobservable, and their properties cannot be accessed by
collisional modeling, because objects larger than 10...60m in the present-day
EKB are not in a collisional equilibrium. To place additional constraints, we
use in-situ measurements of the New Horizons spacecraft within 20AU. We show
that the TNO population has to have a break in the size distribution at s<70km.
However, even this still leaves us with several models that all correctly
reproduce a nearly constant dust impact rates in the region of giant planet
orbits and do not violate the constraints from the non-detection of the EKB
dust thermal emission by the COBE spacecraft. The modeled EKB dust disks, which
conform to the observational constraints, can either be transport-dominated or
intermediate between the transport-dominated and collision-dominated regime.
The in-plane optical depth of such disks is tau(r>10AU)~10^-6 and their
fractional luminosity is f_d~10^-7. Planets and sublimation are found to have
little effect on dust impact fluxes and dust thermal emission. The spectral
energy distribution of an EKB analog, as would be seen from 10pc distance,
peaks at wavelengths of 40...50\mum at F~0.5mJy, which is less than 1% of the
photospheric flux at those wavelengths. Therefore, exact EKB analogs cannot be
detected with present-day instruments such as Herschel/PACS.Comment: 10 pages, 8 figures, accepted for publication in Astronomy and
Astophysic
The Edgeworth-Kuiper debris disk
(Abridged) The Edgeworth-Kuiper belt with its presumed dusty debris is a
natural reference for extrsolar debris disks. We employ a new algorithm to
eliminate the inclination and the distance selection effects in the known TNO
populations to derive expected parameters of the "true" EKB. Its estimated mass
is M_EKB=0.12 M_earth, which is by a factor of \sim 15 larger than the mass of
the EKB objects detected so far. About a half of the total EKB mass is in
classical and resonant objects and another half is in scattered ones. Treating
the debiased populations of EKB objects as dust parent bodies, we then
"generate" their dust disk with our collisional code. Apart from accurate
handling of collisions and direct radiation pressure, we include the
Poynting-Robertson (P-R) drag, which cannot be ignored for the EKB dust disk.
Outside the classical EKB, the radial profile of the optical depth
approximately follows tau \sim r^-2 which is roughly intermediate between the
slope predicted analytically for collision-dominated (r^-1.5) and
transport-dominated (r^-2.5) disks. The cross section-dominating grain size
still lies just above the blowout size (\sim 1...2 \microm), as it would
without the P-R transport. However, if the EKB were by one order of magnitude
less massive, the optical depth profile would fall off as tau \sim r^-3, and
the cross section-dominating grain size would shift from \sim 1...2\microm to
~100 \microm. These properties are seen if dust is assumed to be generated only
by known TNOs. If the solar system were observed from outside, the thermal
emission flux from the EKB dust would be about two orders of magnitude lower
than for solar-type stars with the brightest known infrared excesses observed
from the same distance. Herschel and other new-generation facilities should
reveal extrasolar debris disks nearly as tenuous as the EKB disk. The
Herschel/PACS instrument should be able to detect disks at a \sim 1...2M_EKB
level.Comment: 18 pages, 14 figures, accepted for publication in A&
- …