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ABSTRACT

Context. High-resolution images of circumstellar debris discs reveal off-centred rings that indicate past or ongoing perturbation,
possibly caused by secular gravitational interaction with unseen stellar or substellar companions. The purely dynamical aspects of
this departure from radial symmetry are well understood. However, the observed dust is subject to additional forces and effects, most
notably collisions and drag.
Aims. To complement the studies of dynamics, we therefore aim to understand how the addition of collisional evolution and drag forces
creates new asymmetries and strengthens or overrides existing ones.
Methods. We augmented our existing numerical code Analysis of Collisional Evolution (ACE) by an azimuthal dimension, the
longitude of periapse. A set of fiducial discs with global eccentricities ranging from 0 to 0.4 was evolved over gigayear timescales. Size
distribution and spatial variation of dust were analysed and interpreted. We discuss the basic impact of belt eccentricity on spectral
energy distributions and images.
Results. We find features imposed on characteristic timescales. First, radiation pressure defines size cut-offs that differ between periapse
and apoapse, resulting in an asymmetric halo. The differences in size distribution make the observable asymmetry of the halo depend
on wavelength. Second, collisional equilibrium prefers smaller grains on the apastron side of the parent belt, reducing the effect of
pericentre glow and the overall asymmetry. Third, Poynting–Robertson drag fills the region interior to an eccentric belt such that the
apastron side is more tenuous. Interpretation and prediction of the appearance in scattered light is problematic when spatial and size
distribution are coupled.
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1. Introduction

Observed dust in debris discs is produced in collisions amongst
orbiting planetesimals. Resolved images at submillimeter wave-
lengths, which trace large grains, suggest that the dust parent
bodies are arranged in narrow belts, similar to the classical Kuiper
belt in the solar system. These narrow planetesimal belts are also
evident in scattered light images in the optical and near-infrared.
The small dust grains visible at these wavelengths are most abun-
dant at the same locations where their parent bodies reside.

In some of the debris discs, these narrow planetesimal belts
appear eccentric and show a global offset between the belt centre
and the star. The disc in the Fomalhaut A system (Kalas et al.
2005, 2013) is perhaps the most prominent example. Another
example is the HD 202628 disc (Krist et al. 2012). Many other
discs, such as HD 32297 (Kalas 2005), HD 61005 (also known
as the Moth, Hines et al. 2007), and HD 15115 (the Blue Needle,
Kalas et al. 2007), exhibit global asymmetries between the two
wings. It is possible that these asymmetries also derive from the
offsets in the underlying belts, which may not be seen because of
the edge-on orientation of the discs and/or insufficient spatial res-
olution of the submillimeter facilities. Belt offsets can naturally
be explained by as yet undiscovered planets in eccentric orbits
interior to (Lee & Chiang 2016; Esposito et al. 2016) or substellar
companions exterior to the belts (Thébault et al. 2010; Thébault
2012; Nesvold et al. 2016). Alternatively, the wing asymmetries

may also be caused by recent giant collisions (e.g. Kral et al.
2015; Olofsson et al. 2016) or displacement of the dust by the sur-
rounding interstellar gas (Debes et al. 2009) or dust (Artymowicz
& Clampin 1997).

Interpretation of asymmetries in discs in terms of potential
perturbers requires models to predict how exactly such planets
would shape the distribution of the disc material. Whereas the
influence of planets on the parent belts is easily understood with
the Laplace–Lagrange secular perturbation theory, the task gets
more complicated for small dust grains. These dominate the cross
section and thus also the observable appearance of extrasolar de-
bris discs. However, these are not direct tracers of the underlying
distribution of parent bodies from which they are produced be-
cause they are subject to an additional array of forces and effects,
including collisional production and removal, radiation pressure,
and drag forces (e.g. Wyatt et al. 1999).

Previous work (Stark & Kuchner 2008, 2009; Kuchner &
Stark 2010; Thébault et al. 2012, 2014; Vitense et al. 2012; Kral
et al. 2013; Nesvold et al. 2013; Vitense et al. 2014; Kral et al.
2015; Nesvold & Kuchner 2015b,a; Lee & Chiang 2016; Esposito
et al. 2016, among others) extended purely gravitational models
of planet-disc interactions by including these effects and forces
acting on dust grains. In this paper, we tackle the problem with
a novel approach that is based on modelling of the evolution of
the phase-space distributions of the material, rather than N-body
integrations as was done previously. We show that a combination
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of grain-grain collisions and Poynting–Robertson (PR) drag with
the gravitational perturbations by massive bodies in the system
creates inseparable size-spatial distributions of solids. These are
used to explore the distributions of dust grain sizes in different
disc locations and expected observable signatures in discs.

We start with a discussion of secular perturbations by planets
as a potential cause for the narrow eccentric belts in Sect. 2.
In Sect. 3 we introduce a new version of our collisional code
ACE which can now treat azimuthal asymmetry. Sections 4 and 5
present the outcomes of simulations of fiducial discs in terms of
dust distributions and observables, respectively. We summarize
our findings in Sect. 6.

2. On possible origins of the offsets

The presence of eccentric belts is evident from observed images,
but the origin of these offsets is yet unclear. Mechanisms other
than a planet in eccentric orbit in the cavity of the disc are conceiv-
able. For instance, Shannon et al. (2014) have proposed that the
eccentricity of the belt around Fomalhaut A was set by dynamical
interactions with the other two companions of this triple system,
Fomalhaut B and C. Yet the planetary scenario is considered the
most generic, and we now address it in more detail.

2.1. Secular perturbations

Where both short-period perturbations and resonances are unim-
portant, secular Laplace–Lagrange theory provides the means to
compute the perturbing influence of planets or substellar com-
panions (see e.g. Murray & Dermott 2000). Differences between
mean anomalies of perturber and perturbee are assumed to be ran-
dom in that approximation. While no energy is exchanged, orbital
eccentricities and orientations of the orbits change. In a space
spanned radially by eccentricity e and azimuthally by longitude
of periapse $ (Fig. 1), secular perturbation makes the eccentric-
ity vector (e cos$, e sin$) precess uniformly along a circle with
a radius called proper eccentricity, ep, centred around a forced
eccentricity ef (Hirayama 1918). The closer the combination of
ep and ef gets to unity, the higher are the deviations from perfect
circles (e.g. Beust et al. 2014). The forced eccentricity vector is
aligned parallel to the eccentricity vector of the planet, where its
absolute value is (Murray & Dermott 2000):

ef = eplanet

b(2)
3/2(α)

b(1)
3/2(α)

=

[
5
4
α + o(α)

]
eplanet, (1)

where eplanet is the absolute eccentricity of the orbit of the planet.
The bs are Laplace coefficients, which only depend on the ratio
of semi-major axes of the (interior) planet and a perturbed belt
object, α ≡ aplanet/ab < 1. A given forced eccentricity can be
caused by a nearby planet of the same eccentricity or a closer-in
planet of higher eccentricity. Figure 2 depicts the corresponding
planetary orbital eccentricity as a function of its relative distance
to the perturbed belt. Although better approximations exist for
perturber eccentricities eplanet > 0.2 (see e.g. Mustill & Wyatt
2009, and references therein), we use Laplace–Lagrange theory
for the broad analysis in this section.

While the mass of the perturber does not influence ef (as long
as Mplanet � M∗), this mass determines the timescale on which
this precession occurs. Based on the (approximate) angular preces-
sion frequency for a single perturber (Murray & Dermott 2000),

ef = eb

e sin ϖ

e cos ϖ eb

ef

e sin ϖ

e cos ϖ

Fig. 1. Possible scenarios for the origin of eccentric narrow belts through
secular perturbation. The left panel shows equilibrium precession of
the complex eccentricities around a forced eccentricity ef close to the
observed average belt eccentricity eb. The right panel shows ongoing
precession around an unknown ef from zero to a currently observed
value eb.
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Fig. 2. Planetary orbital eccentricity that is necessary to produce a given
forced eccentricity ef as a function of the ratio of semi-major axes be-
tween planet and perturbed belt.

A =

√
GM∗(1 − β)

a3
b

Mplanet

4M∗(1 − β)
αb(1)

3/2(α), (2)

the time for a full precession cycle can be estimated from

T full
prec ≡

2π
A

=
M∗(1 − β)

Mplanet

4Pb

αb(1)
3/2(α)

, (3)

where Pb = 2π
√

a3
b/[GM∗(1 − β)] is the orbital period in the belt.

The additional factor 1 − β with β ≡ Fpr/Fgrav, the ratio of the
forces due to radiation pressure and gravitational pull, accounts
for the reduction of effective stellar mass because of radiation
pressure.

An important criterion that the dynamical evolution must
fulfil is to allow for narrow belts. We consider two principle
possibilities (Fig. 1), which is a simplification of the scheme of
four classes discussed by Thilliez & Maddison (2015). One is
that planetesimals in the belt have low proper eccentricities, ep. In
equilibrium, over timescales longer than the precession period, the
width of the belt is then set by these proper eccentricities. If they
are low, the belt remains narrow at all times (Fig. 1 left). However,
this raises the question of how the orbits of the parent bodies came
close to their forced value in the e-$ plane. It would be more
natural to assume a second possibility, in which planetesimals
were born in nearly circular orbits, before the planetary perturber
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emerged in the protoplanetary disc. If so, we must require the
precession circle to cross the centre (i.e. the point e = 0) and the
currently observed average belt eccentricity e = eb. The minimum
time for the belt eccentricity to precess to eb is a fraction,

Tprec ≈ T full
prec

eb

2πef
, (4)

of a full cycle (see Fig. 1 right), potentially increased by NT full
prec

if N precession cycles have already passed. However, precession
also smears out the orbits around the forced eccentricity in a wide
circle if the belt had no offset prior to the perturbation. The re-
sulting spread in e–$ would be twice as large as ef itself, leading
to wide instead of narrow belts (Beust et al. 2014). Thus, for
this scenario to produce a narrow belt, the differential precession
timescales must be longer than the time since perturbation started,
to prevent this smearing out. We can define such a differential
timescale as

∆Tprec ≡
∆eb

∆A
, (5)

where ∆eb is the spread in eccentricities and ∆A denotes the
spread in linear change rates in eccentricity space as

∆A =
d(Aef)

dα
dα
dab

∆ab = Aef
∆ab

ab

5
2

+
α

b(2)
3/2

db(2)
3/2

dα

 · (6)

Inserting (6) into (5) and expanding the term in brackets in a
series in α, we obtain

∆Tprec =
∆eb

Aef

ab

∆ab

[
9
2

+
7
2
α2 +

119
32

α4 + o(α4)
]−1

, (7)

or with Eq. (3),

∆Tprec ≈ T full
prec

∆eb

2πef

ab

∆ab

1 − α2

4
(8)

because the coefficients in the series approach a value of 4. The
spread in eccentricities (∆eb) remains lower than the average
eccentricity (eb) and the belt remains narrow as long as ∆Tprec >
Tprec. We find

∆eb = eb

2πef

ab

∆ab

1 − α2

4
>

eb

2πef
+ N (9)

and

∆ab

ab
<

1 − α2

4

(
1 +

2πNef

eb

)−1

· (10)

This constraint on the belt width is mild for N = 0 and low values
of α, but is strong for α close to 1 and N > 0. That is, it is more
likely that an observed narrow belt is still in its first precession
cycle. Assume, for example, that the belt is distant from the planet,
α � 1, and that the observed belt eccentricity is approximately
the same as the forced eccentricity. We find ∆ab/ab < 1/4 for
N = 0 and ∆ab/ab . 1/29 for N = 1. While the first belt can be
broad, the second belt needs to be narrow.

2.2. Constraints on perturbing planets

Not excluding either of the two possibilities described in Sect. 2.1,
we now briefly discuss what both would mean for the unseen per-
turbing planet. In the modelling described in the rest of the paper,
we use the mean eccentricity of the parent belt, eb, as a key
paremeter. However, its interpretation in these two cases is differ-
ent. In the low-ep scenario, eb is equal to the forced eccentricity ef
(Fig. 1 left). In that case, the apsidal line of the orbit of the planet
is aligned with the major axis of the belt. In the slow-precession
scenario, eb is not equal to ef. Instead, it represents the instanta-
neous value of the complex eccentricity e (Fig. 1 right). In that
case, the planetary orbit is misaligned with the major axis of the
belt (Beust et al. 2014).

3. Collisional model

The number of particles in debris discs is orders of magnitude
beyond the scope of pure N-body simulations. Hence, statis-
tical representations for particle distributions and/or collisions
are used. Collision rates and outcomes are calculated for whole
groups of similar particles, called super-particles, bins, tracers,
or streamlines. A major difficulty common to all approaches is
the sampling; the number of groups needs to be high enough to
properly represent the modelled distribution and low enough to
be computationally tractable. There are two main approaches to
this grouping: (A) time-resolved and (B) orbit-averaged.

In approach A, particles in close spatial proximity and with
similar velocity vectors are grouped into so-called super-particles
(Grigorieva et al. 2007), which can be viewed as more or less co-
herent clouds of particles that move in parallel. When two clouds
collide, collision rates among individual particles are calculated
based on the local particle-in-a-box principle. The collision cross
section – or the volume of interaction – of the super-particles can
either be defined as a co-moving sphere (e.g. Grigorieva et al.
2007) or a (revolving) grid element in polar coordinates (e.g.
Kral et al. 2013). Smaller interaction volumes reduce the rate of
collisions per super-particle, but increase the rate of individual
collisions per super-collision. Smaller super-particles allow for
higher spatial (and temporal) resolution, but require more super-
particles to reduce noise artefacts. The biggest advantage of this
approach is the ability to model short-term effects, such as col-
lisional avalanches (Grigorieva et al. 2007), major break-ups of
planetesimals (Kral et al. 2015), or close stellar flybys (Nesvold
et al. 2017). Owing to the underlying N-body integration, addi-
tional forces are easily implemented in these codes, including
radiation pressure, drag-induced spiralling, resonant capture, and
scattering. Collisional grooming, the algorithm presented by Stark
& Kuchner (2009), can be considered a variant in which collisions
do not create new dust. Once released at a (constant) production
rate, grains stream along their trajectories, while their number
densities are gradually reduced in collisions as their trajectories
cross others (or themselves). The model settles towards an equi-
librium. Levison et al. (2012) have introduced a further example
for approach A.

In approach B, which our code ACE follows, particles are
grouped according to their orbits. Instead of local clouds, each
group populates a given ellipse (or hyperbola) with particle
density uniform accross mean anomalies, i.e. uniform in time.
Discrete orbits are fixed throughout the simulations, parameter-
ized either by orbital elements (ACE), or again, by location and
velocity vector (Thébault et al. 2003). This orbit-averaging makes
the models meaningful only on timescales longer than the orbital
period. It excludes application to very dense discs with short
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collision timescales and to the short-term perturbations that can
be analyzed with approach A. On the other hand, the phase space
of orbital elements eases long-term computations with time steps
of millions of years, i.e. orders of magnitude longer than orbital
periods.

3.1. Phase space and master equation

While previous versions of ACE could only treat axisymmetric de-
bris discs (e.g. Krivov et al. 2006, 2013; Reidemeister et al. 2011;
Löhne et al. 2012), the azimuthal distribution is now allowed to
be non-uniform. The phase space spans an additional dimension
that covers the orientations of object orbits, parameterized by
longitude of periapsis $ ≡ Ω + ω, i.e. the sum of the longitude
of the ascending node (Ω) and the argument of periapsis (ω). The
vertical dimension is still averaged over (cf. Krivov et al. 2006).

In total, the discretized distribution of material is represented
by bins with four dimensions: (1) object masses m; (2) orbital peri-
centres q; (3) eccentricities e; and (4) longitudes of periapse $.
Collisions among pair-wise combinations of bins are possible
at up to two distinct points defined by the qs, es, and $s of the
colliders. Collision velocities, rates, and outcomes follow directly
(Krivov et al. 2006).

The discretized master equation to be integrated over time
reads

ṅi =
∑

jk

Gi jkn jnk −
∑

j

Li jnin j +
∑

j

Ti jn j, (11)

where ni is the number (or mass) of objects in the bin specified by
multi-index i ≡ (im, iq, ie, i$). Coefficients Gi jk denote the gain,
that is the specific rates at which objects of type i are formed in
collisions among objects of types j and k; Li j denote the loss,
that is the specific rate at which objects of type i are removed in
collisions with j. The ACE code models drag forces by advection
from grid cell to grid cell (since Reidemeister et al. 2011). The
coefficients Ti j hence denote the transport to cell i from (neigh-
bouring) cell j. For example, PR drag reduces q in bin j at a
rate q̇ j. Given a bin width ∆q j, the contents of bin j are moved
towards i at a rate Ti jn j = n jq̇ j/∆q j.

With collision physics depending on the orientations of the
orbits only through the difference $i−$ j, the dependence of Gi jk
and Li j on i$, j$, and k$ is only through pair-wise differences
i$ − j$, etc. The relation Gi jk = Gi′ j′k′ for i′ = (im, iq, ie, i$ + o),
j′ = ( jm, jq, je, j$ + o), and k′ = (km, kq, ke, k$ + o) with o ∈ N
can be employed to speed up the calculations; instead of looping
colliders over j$ and k$, k$ − j$ and j$ are used, making the
innermost loop over j$ trivial.

3.2. Collision outcomes

Depending on the masses of the colliders and the impact en-
ergy, we consider three main outcomes. First, disruption and
dispersal occurs if the energy suffices to overcome both the ma-
terial strength and the combined gravitational potential of the
colliders. For that threshold specific energy we follow Löhne
et al. (2012) and assume the size dependence described by
Benz & Asphaug (1999) together with the modification from

Stewart & Leinhardt (2009), i.e.

Q∗i j =

[
5 × 102 J/kg

( si j

1 m

)−0.37

+ 5 × 102 J/kg
( si j

1 km

)1.38
] ( vimp

3 km s−1

)0.5

+
3G(mi + m j)

5si j
, (12)

where the two terms in brackets on the right-hand-side represent
(1) shock disruption in strength regime and (2) in gravity regime,
scaled by impact velocity vimp. By si j ≡ (s3

i + s3
j)

1/3 we denote
the equivalent radius of a sphere with the combined volume of
the colliders. The last line in Eq. (12) approximates the specific
energy required to overcome self-gravity. It is important only for
radii s & 30 km and has not been taken into account in previous
ACE versions.

Second, below that threshold, we call collisions cratering if
the target retains at least half of its original mass, but half the
impact energy is enough to disrupt the projectile. Gravitational
accretion also falls into this category. Third, if both colliders
stay intact, they are assumed to separate again, unless impact
velocities are below 10 m/s. In all three cases, a cloud of smaller
fragments is produced in addition to the remnants of the colliders.
In the model, the total mass in escaping fragments is proportional
to impact energy,

mfrag =
Q

Q∗i j

(mi

2
+ m j

)
. (13)

The fragment mass distribution is assumed to follow a power law
with exponent η = −11/6 up to a limiting mass, above which the
power-law distribution would accumulate to exactly one further
particle. The mass of the largest fragment is thus given by

mlf ≡
2 + η

−η − 1
mfrag =

1
5

mfrag, (14)

where mfrag is the total mass in escaping fragments. The same
prescription was used in previous ACE versions.

We treated the remnants from erosive collisions somewhat
differently from new fragments. If their new combination of mass
and orbit still has them in the same bin, the total mass in that bin
is reduced by how much is transformed into fragments. The mass
of the remnants is only added to the loss of one bin and the gain
of another if the remnants move to a different bin. However, in
what follows we simply refer to both fragments and remnants as
fragments.

3.3. Fragment orbits

Momentum conservation requires that the cloud of fragments
produced in a collision has the same centre of mass as the origi-
nal colliders. Neglecting relative velocities of the fragments, i.e.
assuming full energy dissipation, all share a common initial ve-
locity. As soon as the cloud becomes optically thin, radiation
(and wind) pressure segregate the fragments according to their
size-dependent β ratios. In the spirit of Krivov et al. (2006) the
following orbital semi-major axis a, semilatus rectum p, and ec-
centricity e can be derived for a fragment produced in a collision
between a target (subscript t) and a projectile (subscript p) at a
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distance r, i.e.

r
a

= 2 −
m′2p

m′2sum
·

[
2 −

r
ap

]
−

m′2t
m′2sum

·

[
2 −

r
at

]
−2

m′pm′t
m′2sum

[
1
r
√

pp pt

±

√(
2 −

r
ap
−

pp

r

) (
2 −

r
at
−

pt

r

) , (15)

p =
m′2p

m′2sum
pp +

m′2t
m′2sum

pt + 2
m′pm′t
m′2sum

√
pp pt,

e = sgn(1 − β)
√

1 −
p
a
, (16)

where m′t ≡ mt
√

1 − βt and m′p ≡ mp
√

1 − βp denote the effective
masses of target and projectile, and m′sum ≡ (mt + mp)

√
1 − β the

sum of the collider masses, weighed by the β ratio of the fragment.
The signs of e and p are equal to that of 1 − β, corresponding to
anomalous hyperbolae with e < 0 for β > 1.

For grains that are released from a macroscopic body with
βt = 0 on impact of a projectile with mp � mt, Eq. (15) is reduced
to

a = at
1 − β

1 − 2βat/r
· (17)

The blowout limit is reached where a → ∞, corresponding to
(Kresák 1976)

βlim =
r

2at
· (18)

That limit varies between (1+e)/2 and (1−e)/2 for a grain release
at apastron (r = Q = a(1 + e)) and periastron (r = q = a(1 − e)),
respectively. When launched from circular orbits, grains become
unbound for β ≥ 1/2.

If the material distribution is non-axisymmetric, the relative
orientations of fragment orbits with respect to those of the ini-
tial colliders need to be considered in the modelling. The true
anomaly θ of a freshly released fragment can be determined from

e sin θ =
m′t

m′sum

√
p
pt

et sin θt +
m′p

m′sum

√
p
pp

ep sin θp. (19)

and

e cos θ =
p
r
− 1. (20)

At the mutual crossing points of two orbits, the difference of
true anomalies equals the (negative) difference between their
longitudes of periapse

θ′ − θ = $ −$′. (21)

For collisions between projectiles and targets, the true anomalies
of the latter at these points are given by (cf. Krivov et al. 2006,
Eq. (8))

θt = arcsin
A
√

C
± arccos

B
√

C
(22)

or

sin θt =
AB ± D

√
C − B2

C
, cos θt =

BD ∓ A
√

C − B2

C
, (23)

where

A ≡ ep pt sin($p −$t), (24)
B ≡ pp − pt, (25)

C ≡ e2
t p2

t + e2
p p2

p − 2pp ptepet cos($p −$t), (26)

D ≡
√

C − A2 = ep pt cos($p −$t) − et pp. (27)

3.4. Model and grid parameters

The aim of our study is to identify the characteristic influence
of collisions and drag on perturbed discs. In this first paper, we
refrain from covering the complexity of the wide parameter space
spanned by observed discs. Instead we present and discuss results
for a small set of fiducial, typical debris systems. For the central
star, we choose an A3 V main-sequence star, with mass, luminos-
ity, and effective temperature adopted from the values reported
for Fomalhaut, i.e. M = 1.92 MSun, L = 16.6 LSun, T = 8590 K
(Mamajek 2012). The stellar photospheric emission is modelled
with the nearest point in the PHOENIX/NextGen grid of models
(Hauschildt et al. 1999). We model the material with a homoge-
neous mix (Bruggeman 1935) of astrosilicate (Draine 2003) and
water ice (Li & Greenberg 1998) in equal volume fractions with
a bulk density of 2.35 g cm−3. The combination of this material
with the high luminosity and radiation pressure of the early-type
star sets a clear blowout limit at grain sizes of a few microns.

Asymmetries are most easily identified where narrow belts
are resolved, which correspond to narrow volumes in the space of
orbital elements. The relative radial width ∆Qb/Qb at the apastron
Qb = ab(1 + eb) of a belt can be estimated from

∆Qb

Qb
=

√(
∆ab

ab

)2

+

(
∆eb

1 + eb

)2

(28)

if a and e vary independently. A given radial HWHM of, for
instance, δr/r = 10 % does not only limit ∆a/a ≤ 10 %, but also
∆eb = ep ≤ 0.1. For the parent bodies in our main simulation runs,
we therefore assumed initial distributions that are confined to
circular regions in the (e cos$, e sin$) plane, centred on (eb, 0),
with radii ep = 0.1. The values used for eb in the individual runs
range from 0.0 to 0.4.

The eccentricity grid that we use spans [0.015, 1.5] and is
logarithmically spaced for e . 0.4 and for e > 1, with factors
∆e/e ≈ 0.25. In order to preserve accuracy for barely bound
grains, the step size is additionally limited to ∆e ≤ 0.1 for e < 1,
resulting in nearly linear steps in the range 0.4 . e < 1. The
transitions between linear and logarithmic regimes are smooth.
In total, we model the number of bins per unit logarithm of
eccentricity with

di
d ln e

=

{
(ln 1.25)−3 +

[
(0.1/e)3 + (0.1/1.5)3

]−1
}1/3

. (29)

The resulting number of eccentricity bins is 26. The grid of orbit
orientations has 32 linear steps in $, covering [0, 2π). The reso-
lution elements ∆e × e∆$ thus measure 0.25e × 0.2e for e . 0.4
and 0.1 × 0.2e for 0.4 . e < 1. Figure 3 illustrates the sub-grid of
e and $ in a polar plot.

In the radial direction, a grid of logarithmically spaced peri-
astron distances q ≡ a(1 − e) is used. A number of 85 bins spans
a distance range from 30 au to 600 au, corresponding to relative
bin widths of 0.036. In combination with an eccentricity spread
ep = 0.1, this width ensures that orbits from neighbouring q an-
nuli cross. In all runs, the q-and-e sub-grid is filled initially such
that a range of semi-major axes from 95 to 110 au is covered.
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Fig. 3. Phase-space distribution of grains of three different sizes for a disc
with a belt eccentricity eb = 0.4: (top) s = 38 µm (β = 0.06), (middle)
s = 8.3 µm (β = 0.26), and (bottom) s = 4.3 µm (β = 0.5). The radial
coordinate is logarithm of eccentricity, while the longitude of periapse
$ is plotted azimuthally. The colour scale indicates mass per unit mass,
eccentricity, and angle. The two columns of panels represent (left) the
initial stage at t ≈ 0 yr and (right) an intermediate stage at t = 107 yr. The
black crosses indicate eb. The light blue dots indicate orbits of fragments
that are launched in equidistant steps of true anomaly from a parent belt
with zero relative velocities; the spread of blue dots around black crosses
represents the result of radiation pressure; see Sect. 3.3. White lines in
the top panels roughly enclose the initial distributions in the parent belt
(i.e. the assumed spread ∆eb of parent body eccentricities around eb).

Finally, masses are binned logarithmically from a minimum
grain radius of 0.26 µm to a maximum of 49 km with factors of
12 in mass (or 2.3 in radius) between adjacent bins. For grains
with radii s . 30 µm (corresponding to β & 0.1), where radiation
pressure is important, the spacing is refined to factors of 121/4 in
mass (or 1.23 in radius) with a smooth transition between these
regimes. A number of 48 mass bins result. The total number of
bins in the grid that are actually filled increases over time and
then saturates at about 106 in the runs presented here.

The initial size distribution is assumed to follow a power law
n(s) ∝ sνTorbit/T0 with ν = −3.66, normalized to a total mass of
two Earth masses. We follow Strubbe & Chiang (2006) and Lee
& Chiang (2016) in scaling the initial abundances of grains with
their orbital timescales Torbit with respect to that of large grains
(β = 0), T0. This scaling is meant to account for the increased
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Fig. 4. Average lifetimes against (solid red) collisional disruption and
(solid blue) PR drag e-folding times (a/ȧ for q = a(1 − e) = 100 au and
e = β/(1 − β); see Sect. 4.3) of objects in our ACE run with a circular
parent belt (eb = 0.0). The dashed and dotted black curves show size-
dependent timescales for full precession cycles caused by planets with
Mpl = 5 × 10−5 M∗ = 32 M⊕ at 30 and 70 au, respectively. The two short
lines of the same styles illustrate the corresponding times to precess just
to eb = 0.1.

lifetimes of smaller grains as a result of their spending most of
the time close to their apocentres, i.e. far from the star. We are
free to choose this initial set-up to ease comparison with other
work. That choice does not influence the dust distribution towards
which the subsequent collisional evolution quickly converges.

4. Resulting size and radial distributions

In this section, we identify the impact that radiation pressure
(Sect. 4.1), collisions (Sect. 4.2), and drag forces (Sect. 4.3) have
on the spatial and size distribution of dust. Figure 4 shows the
different timescales for these effects. Initially, grains populate
the elliptic orbits induced by radiation pressure on short, orbital
timescales. At an intermediate stage (t = 107 yr), enough time
has passed to bring grains with sizes s . 10 cm to collisional
equilibrium. Later, at an evolved stage (t = 2 × 108 yr), grains
with sizes s . 100 µm are in PR drag equilibrium, which means
that the system is older than the time these grains need to spiral
from the belt to the star. In what follows, we use these three stages
to illustrate the different effects. A more detailed comparison of
timescales can be found in Sect. 4.4.

4.1. Dynamical consequences

For the large parent bodies that are unaffected by radiation pres-
sure, a non-vanishing mean eccentricity vector (e cos$, e sin$)
corresponds to a global offset. The typical rates and velocities at
which collisions occur are dictated by the spread in orbital ele-
ments. Discs with different mean eccentricities still have similar
erosion rates as long as this spread is comparable. The parallel
evolution of total mass and dust mass in our simulation runs for
different eb, shown in Fig. 5, confirms this expectation. When
looking at parent bodies and larger grains, a global eccentricity
results in literally just an offset, where the relative widths of
periastron and apastron side are equal.

The picture is different for smaller grains. The additional
action of radiation pressure induces a lower blowout limit that
depends on the birth location, which changes the size distribution
in the parent belt. Blowout occurs for lower values of β for grains
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that are launched near periastron of a parent orbit. The excess
velocity there helps these grains overcome the gravitational bond,
increasing the maximum size of unbound grains. Vice versa, when
released near the belt apastron, smaller grains can stay bound.
Figure 6 illustrates this shift in blowout size with grain size
distributions near the periastra and apastra of parent belts with
different eb. According to Eq. (18), the ratio between the blowout
sizes at periastron and apastron is given by (1 + eb)/(1− eb). This
ratio reaches a value of 7:3 for eb = 0.4, which is consistent with
the ACE results.

In the left panel of Fig. 7, radial profiles of the normal optical
depth, τ, are plotted for t ≈ 0 yr. At large radii, these profiles
drop almost as τ ∝ r−3/2, the behaviour expected for discs in
equilibrium (Krivov et al. 2006). This is by design because we
employed the initial set-up of Strubbe & Chiang (2006), who
derived that slope analytically. Wiggles in the radial profiles are
artefacts of the narrow size distribution in the halo reaching the
resolution limit of our mass grid.

The blowout limit then defines the typical sizes of the barely
bound grains that form the halo. The different blowout limits
induce different grain sizes, depending on the side of the halo.
Barely bound grains are typically produced near their periastra,
but spend most of their time near the apastra of their orbits, i.e. on
the opposite side. Therefore the part of the halo that extends be-
yond the apastron side of the belt is produced at its periastron, and
vice versa. The two upper rows in the left column of Fig. 3 show
how larger grains have orbits that are still aligned azimuthally
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bodies is indicated with solid horizontal lines. The dotted curves trace
the apastron distances of grains produced on the respectively opposing
sides of the parent belt.

with the parent belt. Their periastra (as described by e and $ in
that figure) remain close to the periastron of the belt. The small
grains shown in the bottom row of Fig. 3 can only stay bound
when they are created with their periastra at the apastron side of
the belt. In consequence, the halo on the apastron side is formed
by grains larger than those on the periastron side. Figure 8 shows
this effect for a disc with eb = 0.4. There, the β values of the
bound halo grains on the periastron side approach 0.7 as distance
increases. The halo on the apastron side is populated by larger
grains, initially limited by radiation pressure to β < 0.3.

The widths of the size distributions on the two sides differ
as illustrated in Fig. 9, where radial and azimuthal distributions
for different grain sizes are compared. For all three grain sizes
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Fig. 9. Two-dimensional distributions of grains for the same grain sizes
and stages as in Fig. 3. The radial distance is scaled logarithmically, with
black circles indicating equal distances, spaced at factors of two. The
colour scale indicates normal optical depth per size decade, spanning
2.5 orders of magnitude from white to black. The solid blue lines trace
the belts of parent bodies. The dashed white lines follow the trajectories
of fragments launched from the periastra and apastra of the parent belts.
The solid white caustics separate regions that can be reached by bound
grains directly originating in a thin parent belt from regions that cannot.
Only for the barely bound grains in the bottom row does the inner caustic
differ from the parent belt itself.

shown, the range of distances covered beyond the apastron side
of the belt is wider because they are bound less in that direction.
The regions populated by grains of different sizes overlap more
strongly on the apastron side, and hence, grains of a wider range
of sizes populate a given distance.

The main reason for the asymmetries seen in the halos in our
simulations are the different conditions under which grains are
launched from different sites along the parent belt. Initial orbital
velocities differ along the belt, as do the resulting fragment orbits.
Most of the effects described in this section can also be found in
Lee & Chiang (2016). A prominent example is the bow or wing
asymmetry seen in Fig. 9e as a dark arc on the right-hand side of
that panel. Lee & Chiang have an equivalent arc in their Fig. 1
(and Fig. 7). It traces the outer boundary of the region populated
by barely bound grains on the periastron side.

A similarly asymmetric halo is described by Kral et al. (2015)
for dust produced in a giant breakup. However, the asymmetry

there is mainly caused by the asymmetric distribution of launch
sites, where the initial round of fragments are all produced from
a single parent.

4.2. Effects of collisions

In collisional equilibrium a size distribution of infinite extent
can be described well by a power law n(s) ∝ sα, with α ∼ −3.5
(Dohnanyi 1969; Durda & Dermott 1997; O’Brien & Greenberg
2003; Wyatt et al. 2011; Pan & Schlichting 2012). However,
notable ripples appear near physical breaks or cut-offs. Waves in
the size distribution are induced for asteroids by the transition
from strength to self-gravity (Durda & Dermott 1997) and for
grains above the blowout limit by the radiation pressure cut-
off (Campo Bagatin et al. 1994). At this lower size end, barely
bound grains become overabundant because of a lack of smaller
projectiles. In turn, this overabundance leads to a depletion of
somewhat larger grains. Wavelengths and amplitudes of these
waves are determined by impact energies relative to disruption
thresholds (Krivov et al. 2006). More realistic impact physics,
such as cratering collisions, quickly damp the waves towards
larger grain sizes (Thébault et al. 2003; Thébault & Augereau
2007; Müller et al. 2010), when compared to simulations where
only disruptive collisions are considered (Löhne et al. 2008).

This wave near the blowout limit is overlaid by an effect first
described in Thébault & Wu (2008). For larger grains, the typical
orbital eccentricities, and hence the typical relative velocities
and collision timescales, are determined by that of their parent
bodies. For smaller grains, radiation pressure is more important.
An additional break in the size distribution occurs where the
two effects are equal, i.e. where e from Eq. (16) equals eb. For
grains produced in a parent belt with average proper eccentricities
ep = 0.05, this break is expected near β = ep/(1 + ep) ≈ 0.05,
corresponding to grain sizes s ≈ 45 µm in our set-up. The right
panel of Fig. 6 shows both the break around this size and the
depletion and blowout-induced waviness below.

The closer grain sizes get to the blowout limit, the further size
distributions near the parent-belt apastra and periastra deviate
from one another. The peak just above the blowout limit is higher
at the parent apastra than at the parent periastra. This difference
increases with increasing eb, reaching an order of magnitude for
eb = 0.4 (Fig. 6). This can be understood because the two sides
are coupled; the larger grains coming from the periastra of the
belts suffer from collisions with the smaller grains coming from
the apastra as their orbits cross.

For grains larger than around 20 µm, the situation seems
reversed. In collisional equilibrium, grains in this size range con-
tribute more to the optical depth at the belt periastra. This effect
is mainly caused by these grains being spread out more widely on
the apastron side, leading to lower densities there. However, part
of this asymmetry extends to grains sizes where radiation pressure
and the resulting radial spread are neglible. As a consequence,
the size distributions are shallower overall for grains between
20 µm and 1 mm, which translates to shallower spectral energy
distributions (SEDs) in the corresponding range of wavelengths
(Draine 2006). When combined with the increased abundance
of barely bound grains at the apastra of discs with higher eb, the
effective grain sizes shift towards smaller radii. This would im-
ply higher temperatures near the apastra, reducing the brightness
asymmetry due to pericentre glow at shorter wavelengths. The
detailed effects on the observable SEDs and images are discussed
in Sect. 5.

In Fig. 3 the most notable difference between the initial stage
and intermediate stage is the filling of regions that could not be
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reached initially. In particular, grains with s = 4.3 µm (β = 0.5)
appear on bound orbits (e < 1) with periastra aligned with the
periastron of the belt. These grains cannot just be produced in
the parent belt. Drag cannot be responsible either because it
cannot alter $ and it cannot re-bind unbound grains in significant
numbers, which is why this process is not modelled in ACE. Thus,
these grains must stem from medium-sized grains. An illustration
of this process is given in Fig. 10, where the orbits of three particle
types actually represented in the ACE grid are shown. The target
(s = 12 µm, β = 0.17, q = 98 au, e = 0.22, $ = 23◦) and the
projectile (s = 5.4 µm, β = 0.4, q = 85 au, e = 0.75, $ = −56◦)
are produced at different locations in the parent belt. At one
of their mutual collision points, they produce a barely bound
fragment that is aligned with the parent belt (s = 4.3 µm, β = 0.5,
q = 101 au, e = 0.95, $ = 0◦). This symmetrization of the phase
space of grains with 0.3 < β < 0.7 leads to a symmetrization of
their spatial distribution. The arc seen on the periastron side in
Fig. 9e is gone in Fig. 9f. Figure 8b shows how these grains then
contribute to and strengthen the halo on the apastron side.

Comparison of the panels in Fig. 7 suggests that the halo on
the periastron side is strengthened even more. While the circular
belt produces a halo with a classical τ ∝ r−3/2 behaviour (Strubbe
& Chiang 2006; Krivov et al. 2006), the halos on the periastron
sides of eccentric belts are closer to τ ∝ r−1...−3/4. Optical depth
falls off more steeply on the apastron sides. The slopes of all
curves converge beyond ∼400 au.

4.3. Inward transport through drag forces

The PR drag and stellar wind drag cause grains to spiral towards
the star on timescales set by their size-dependent susceptibility to
radiation and wind pressure, stellar luminosity and mass loss rate,
and the orbital semi-major axes and eccentricities of the grains
(see, e.g., Robertson 1937; Wyatt & Whipple 1950; Burns et al.
1979). The classical results for the orbit-averaged reduction rates

of as and es are

ȧ = −
βGM∗

ca
2 + 3e2

(1 − e2)3/2 , (30)

ė = −
5βGM∗

2ca2

e
(1 − e2)1/2 · (31)

Other orbital elements are not affected secularly and non-
relativistically. When grains are released from circular orbits
in a source belt, drag alone produces constant optical depth τ(r)
towards the star. Collisional sinks (Wyatt et al. 1999; Wyatt 2005)
make τ decrease further in. Additional sources, such as active
comets (Leinert et al. 1983), increase τ.

Figure 7 shows how drag and collisions shape the optical
depth profiles in the inner regions of our model runs. From the
peak in the parent belt to its inner edge, optical depth drops by
about 2 orders of magnitude. Closer to the star, the slope flattens
out as collisions become less important.

In the runs with eccentric parent belts, optical depths differ
between apastron and periastron sides. Values on the apastron
sides are systematically lower because drag rates are higher there.
This can be explained in more detail with the following analytic
model. At a given distance r from the star, the optical depth is
determined by three factors: (1) the rate σ̇ at which cross section
gets dragged accross that distance; (2) the azimuthal spread of
that cross section, caused by orbital speed v; and (3) the radial
spread, caused by radial drift speed ṙ times orbital period P. All
these quantities differ between periastron and apastron side. On
the periastron side, we have

τq =
σ̇q(r)
|ṙq|Pqvq

, (32)

and for r = q = aq(1 − eq), the product of orbital period and
orbital speed is

Pqvq = 2πaq

√
2aq/r − 1 =

2πr
1 − eq

√
1 + eq

1 − eq
· (33)

The radial component of the orbital velocity vanishes and ṙ is
given by the PR induced reduction of periastron distance

ṙq = q̇ = ȧq(1 − eq) − aqėq. (34)

Inserting Eqs. (30) and (31) into (34) results in

q̇ = −
βGM∗

2cq

4 + e2
q − 5eq

1 + eq

√
1 − eq

1 + eq
· (35)

and

|ṙq|Pqvq =
βπGM∗

c

4 + e2
q − 5eq

1 − e2
q
· (36)

At apastron, where r = Q = aQ(1 + eQ), we find

|ṙQ|PQvQ =
βπGM∗

c

4 + e2
Q + 5eQ

1 − e2
Q

· (37)

For the flux of cross section, we assume

σ̇Q [r = Q] = σ̇a

[
Q

1 + eQ

]
= σ̇q

[
Q

1 − eQ

1 + eQ

]
, (38)
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i.e. material flux does not change from periastron to apastron of a
single orbit. The ratio of fluxes at the same distance on both sides
is thus given by

σ̇Q(r)
σ̇q(r)

=
σ̇a

[
r/(1 + eQ)

]
σ̇a

[
r/(1 − eq)

] · (39)

For the radial dependence of σ̇a(r) under the action of drag and
collisions, we adopt the analytical result of Wyatt et al. (1999),
i.e.

σ̇a(r) ∝
[
1 + 4η(1 −

√
r/r0)

]−1
, (40)

where r0 = ab = 100 au and η ≈ 100 is the ratio of drag and
collision timescales in the parent belt.

The combination of Eqs. (32), (36), (37), (39), and (40) leads
to

τQ

τq
=

1 + 4η
(
1 −

√
r/[r0(1 + eQ)]

)
1 + 4η

(
1 −

√
r/[r0(1 − eq)]

) 4 + e2
q − 5eq

4 + e2
Q + 5eQ

1 − e2
Q

1 − e2
q
· (41)

The first term on the right-hand side accounts for collisional loss.
It dominates close to the parent belt and for high η. The remainder
describes pure drag, dominating close to the star and for low η.

The PR drag reduces orbital eccentricities as grains spiral
in. At a given distance r from the star, grains on the apastron
side therefore have an eccentricity eQ(r) that is lower than the
corresponding eccentricity eq(r) of grains on the periastron side
because r is reached later on the apastron side. The exact relation
between the two eccentricities can be deduced from integrating
the evolutions of a and e simultaneously. From

de
da

=
ė
ȧ

=
5e(1 − e2)

2a(2 + 3e2)
, (42)

Wyatt & Whipple (1950) obtain

a2

a1
=

1 − e2
1

1 − e2
2

(
e2

e1

)4/5

(43)

for PR drag between states 1 and 2. For q = q1, Q = Q2 and
r = q = Q, we find

Q2

q1
=

a2

a1

1 + e2

1 − e1
=

1 + e1

1 − e2

(
e2

e1

)4/5

= 1, (44)

which can be solved numerically to find eQ(=e2) as a function of
eq(=e1).

In Fig. 11, we show the profiles of optical depth expected
from this analytic approach. The comparison with Fig. 7 shows
that these profiles can well reproduce the results of our ACE runs
outside of the parent region, i.e. for r < qmin = (ab − ∆ab)(1 −
eb − ∆eb) on the periastron side and r < Qmin = (ab − ∆ab)(1 +
eb − ∆eb) on the apastron side. The lower panel of Fig. 11 shows
the resulting asymmetry ratios for a range of eccentricities eb and
distances r. For eb = 0.2 and r = 0.5ab, we find τQ/τq = 0.6. The
asymmetry is vanishing slowly with decreasing distance from
the star because typical eccentricities also decrease. This trend is
seen both in the ACE output and the analytic model.

For e = eb ≈ 0.1 observed for the outer Fomalhaut disc,
we predict a flux deficit of 20% at r = 0.5ab ≈ 70 au on the
apastron side compared to the periastron side. This asymmetry is
not seen in currently available observational data because these
are limited by either low resolution in the case of Herschel/PACS
(Acke et al. 2012) or sensitivity in the cases of the Hubble Space
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Fig. 11. Top: analytically derived radial profiles of normal optical depths
on the (dashed lines) apastron and the (solid lines) periastron sides as
a function of distance. Grains are assumed to originate from belts with
r0 = ab = 100 au and eccentricities eb of (red) 0.0, (blue) 0.2, and (black)
0.4. The ratio of drag and collision timescales is set to η = 100. At the
belt edges, i.e. at the right ends of the curves, optical depth starts at finite
values. Bottom: the ratios of optical depths on opposing sides for the
same set of parameters. The dashed lines show the contribution from
drag alone.

Telescope (Kalas et al. 2005) and the Atacama Large Millimetre
Array (Boley et al. 2012). If the dust in the region interior to the
outer Fomalhaut belt does not exhibit such an asymmetry, this
would speak against inward drag as the dominating mechanism
for replenishment.

The above analysis assumes that grains in the PR region start
from orbits that follow those of the parent bodies, i.e. they are
large enough not to be affected strongly by radiation pressure.
However, Fig. 8 shows that smaller grains with potentially higher
initial eccentricities contribute as well. A higher typical eccentric-
ity of PR grains would further strengthen the asymmetry. Despite
uncertainties in e and the simplified collisional depletion, the ef-
fect is robust and provides a testable prediction for the asymmetry
of the drag-filled inner regions of eccentric belts.

4.4. Comparison with precession timescales

In the presented ACE runs we assumed a fixed average belt eccen-
tricity and orientation, which are both present from the beginning
and static throughout the simulation. At the same time we show in
Fig. 4 that a modest Neptune at 30 au can already induce preces-
sion periods as short as ∼108 yr for a distant belt at 100 au. In the
regime of observable dust, precession can thus act on timescales
longer than those for collisions, but shorter than those of drag.
If precession periods and forced eccentricities were equal for
all objects, the effects on dust distribution would be negligible.
The disc would precess as a whole while collisions and drag
take place. However, differential precession due to different semi-
major axes and β ratios twists the disc. Dragged-in dust precesses
faster and dust in the halo precesses slower. In regions where
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Fig. 12. Spectral energy distributions at t = 2 × 108 yr for (red) eb = 0.0,
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converge at a wavelength of 1 mm.

collision timescales are longer, precession smears the distribution
of complex eccentricities, increasing the spread in ∆e, collision
velocities, and potentially, depletion rates. An updated model that
accounts for this process is in preparation.

5. Spectral energy distributions and images

Figure 12 illustrates the mild influence that the combination of
geometrical offset, collisions, and drag has on the overall SED.
Even for the rather eccentric cases eb = 0.2 and sb = 0.4, the
differences in the wavelength range above a few tens of microns
do not exceed 10%. It is only at shorter wavelengths that fluxes
from eccentric discs become significantly higher, which is mainly
due to pericentre glow, i.e. grains near the belt periastron having
higher temperatures.

At wavelengths λ & 100 µm, the SEDs reflect the differ-
ences in size distributions described in Sect. 4.2. Shallower size
distributions in more eccentric belts result in shallower SEDs.
The discrepancy of 10% over a factor of ten in wavelength for
eb = 0.4 corresponds to a difference in power-law slopes of
log(1.1)/ log(10) ≈ 0.04. There exist several effects that have
stronger impacts on SED slopes, but an unknown eccentricity
adds to the uncertainty in the derivation of these other parameters.
SED slopes are commonly used to infer underlying grain size
distributions, which in turn are related to, e.g., collisional physics.
Assuming that a difference of 0.04 in the SED slopes translates
to no more than 0.04 in the inferred slopes of the size distribu-
tions (cf. Draine 2006), we conclude that other observational and
modelling uncertainties dominate.

The panels in Fig. 13 show the fiducial discs with belt ec-
centricities eb = 0.0, 0.2, and 0.4 in thermal emission at 24 µm,
160 µm, and 1.2 mm. Characteristic grain sizes sc at different
wavelengths λ can be estimated from sc ≈ λ/2π (Backman &
Paresce 1993). At λ = 1.2 mm, the halo is invisible and the
discs appear as narrow belts because the dominant grains have

sc ≈ 200 µm, and with β ≈ 0.01, are only weakly affected by
radiation pressure. The drag timescales are such that these large
grains just start to fill the inner gap after a few times 108 yr
(Fig. 4). At 160 µm, correponding to sc ≈ 25 µm and β ≈ 0.08,
the belt is wider and the halo and the inner region start to become
visible. As long as drag is not important, though, the low β of the
grains observed makes the chosen initial distribution, which cor-
responds to the set-up by Lee & Chiang (2016), which is a good
proxy to the collisional steady state at these longer wavelengths.

At λ = 24 µm, we find sc ≈ 4 µm (β ≈ 0.5). Observations
at this wavelength are thus sensitive to the distribution of barely
bound grains around the A3 V star assumed in our simulations.
Grains of this size only stay bound when released from the apas-
tron side of the parent belt, strengthening the halo on the perias-
tron side. As a result and in contrast to the longer wavelengths,
emission on the periastron extends further away from the belt.
Images and radial profiles become more symmetric with increas-
ing distance.

At the inner edges of all belts, the surface brightness drops
by about 1.5–2 orders of magnitude, in agreement with the drops
in optical depth and at 160 µm. However, Fig. 14 shows that
brightness follows r−2.5...−3 at 24 µmin the drag-filled region,
increasing strongly towards the star because of the increasing
temperature. Although the profile flattens off further towards the
star, where 24 µm is no longer on the Wien side, if the dust is
not intercepted by inner planets the behaviour can produce a
significant total excess (e.g. Liou & Zook 1999; Reidemeister
et al. 2011). The wiggles seen at distances r & 200 au in Fig. 14
correspond to the wiggles in the radial profiles of optical depth in
Fig. 7, which are artefacts of the mass binning.

Pericentre glow (Wyatt et al. 1999) and broadening of the
belt towards its apastron induce an asymmetry between the peak
brightnesses in these two loci. The radial cuts in Fig. 14 show
ratios between the peaks for eb = 0.4, which amount to factors
of 1.6 at 1.2 mm, 2.6 at 160 µm, and 3.1 at 24 µm. Although
the Wien side of the SED is very sensitive to temperature, the
asymmetry is only slightly more pronounced at 24 µm than at
160 µm for two reasons. First, typical grains near belt apastron
are smaller than those near periastron, reducing the temperature
difference between both sides; and second, the periastron side
of the belt is wider at 24 µm. In the initial disc, where only the
second reason applies, the brightness ratio is 4.4 at 24 µm.

The actually observed contrast strongly depends on how well
these peaks are resolved. If the narrow periastron side is PSF
broadened to the width of the apastron side, the observable dif-
ference is drastically reduced. Pan et al. (2016) have analysed
this effect and have shown that pericentre glow can turn into
apocentre glow at long wavelengths, where thermal emission
depends less on temperature and resolution is typically lower.
Adopting the idea behind their Fig. 2, we smoothened the images
with Gaussian kernels and plotted azimuthal profiles for eb = 0.4
in our Fig. 15 for two stages. Our initial set-up is represented
by t = 0 yr. After 107 yr, collisional equilibrium is reached but
PR drag has not brightened the innermost region yet. The PSF
broadened discs clearly show reduced pericentre glow at 24 and
160 µm. At 1.2 mm, the apocentre is brighter than the pericentre
by a factor of 1.3, which is roughly consistent with 1 + eb that has
been derived for small eb by Pan et al. (2016). The bump seen
around 180◦ at 24 µm on the right panel reflects the tighter radial
confinement of the small grains near the belt periastron seen in
Fig. 13n.

Images in scattered light are similar to 24 µm emission be-
cause both trace the small, barely bound grains. The major dif-
ference lies in the radial slopes, which are steeper in thermal
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Fig. 13. Synthetic maps of surface brightness at (top) λ = 1200 µm, (middle) 160 µm, and (bottom) 24 µm. Underlying discs are seen face-on, from
a distance of 8 pc. The first three columns from left show discs with belt eccentricities eb = 0.0, 0.2, and 0.4 at time t = 2 × 108 yr. Columns 4 and 5
show the disc with eb = 0.4 at the intermediate (t = 107 yr) and initial (t = 0 yr) stage. The colour scales indicate logarithm of surface brightness.

emission because there the exponential dependence on grain tem-
perature factors in.

The scattering cross section and its angular dependence are
very sensitive to model assumptions on grain morphology. While
Mie theory for perfect spheres works well for s � λ, it fails to
reproduce the scattering phase function for irregularly shaped
grains with s & λ, where the morphology of surface and sub-
surface layers becomes important. Compared to a polished sphere,
a rougher surface can increase backscattering and reduce absorp-
tion (Pollack & Cuzzi 1980). At scattering angles far away from
the strong forward diffraction peaks of large grains, the resulting
phase functions are flatter. In models of debris discs, these more
symmetric phase functions are often associated with the pres-
ence of smaller, spherical Mie grains. This degeneracy between
small grains and grains with small structures is discussed by Min
et al. (2010) and Hedman & Stark (2015) in their models for the
Fomalhaut disc and the G and D68 rings of Saturn, respectively.

In Fig. 16, we illustrate this problem with a set of images for
different scattering models. Results from Mie calculations are
compared to empirical Henyey–Greenstein (HG) phase functions,
ranging from mild forward-scattering with anisotropy parameter
g = 0.3, to strong forward scattering with g = 0.94, and the three-
component best-fit model that Hedman & Stark (2015) derive
for the G ring of Saturn. In the latter, the strongest component
has g = 0.995. As expected from the rather large grains in our
collisional models, the Mie results are best matched by g close
to unity. However, the model based on the Hedman & Stark fit
shows the degree to which the total brightness of the disc in
scattered light may be underestimated. Accordingly, non-Mie

fits to observed discs find weaker anisotropy, with g < 0.5 (e.g.
Kalas et al. 2005; Schneider et al. 2006, 2014; Debes et al. 2008;
Thalmann et al. 2011).

6. Conclusions

With a new version of our collisional code ACE, we have studied
debris discs that are sustained by eccentric belts of parent bodies.
We identified a set of features and asymmetries that are caused
by the combined effects of global eccentricity, radiation pressure,
collisional evolution, and drag forces. The features most easily
observed are as follows:

1. On dynamical timescales, the different radiation pressure
blowout limits on opposing disc sides create an asymmetric
halo. At shorter wavelengths, where small grains dominate,
the halo appears more extended beyond the periastron side
of the parent belt. For the larger grains seen at longer wave-
lengths, the apastron side is more extended.

2. In collisional equilibrium, the abundance ratios between
barely bound grains and grains that are around an order of
magnitude larger are different for opposing sides of the belt.
On the periastron side, average grains are larger, while on the
apastron side, grains are smaller. This size difference reduces
the temperature difference between the two sides and weakens
the brightness asymmetry expected from pericentre glow.

3. Poynting–Robertson and stellar wind drag induce an addi-
tional asymmetry because they reduce apocentre distances
at a higher rate than pericentre distances. Apocentre sides of
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the drag-filled regions inside of eccentric belts are therefore
populated more tenuously. The relative difference between the
two sides is comparable with the belt eccentricity, i.e. 10 %
for eb ≈ 0.1. Towards the star, the asymmetries reduce along
with the eccentricities.

4. Belt eccentricity affects SEDs only weakly. The azimuthal
variation in size distribution and the pericentre glow result in
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Fig. 16. Synthetic scattered light images for different scattering phase
functions: (top left) Mie theory for homogeneous spheres, (top right)
a Henyey–Greenstein (HG) phase function with anisotropy parameter
g = 0.94, corresponding to strong forward scattering, (bottom left) HG
with mild forward scattering, and (bottom right) three-component HG
model of Hedman & Stark (2015) for the G ring of Saturn. The disc is
viewed from an angle 45 degrees below its midplane, with the line of
nodes aligned east–west and the pericentre due west. Hence, the northern
half of the disc lies closer to the observer.

an SED that is broader overall. The effect is most notable in
the mid-IR, but significant only for high (&0.4) eccentricities.

5. Interpretation of near-infrared images crucially depends on
the scattering model on which it is based. Empirical models
valid for the larger grains in the parent belt will be inadequate
for the smaller grains that form the outer halo. Mie theory has
the benefit of retaining the dependence on grain size, but on
the other hand, it does not approximate the scattering phase
functions of larger grains well.

A more detailed analysis of the influence of dust optical properties
and the disc viewing geometry on the observables is on its way.
Another update to ACE will allow us treat the secular precession
of orbits by a perturbing planet in parallel with the collisional
evolution.
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