Analyses of the cosmic microwave background (CMB) radiation maps made by the
Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not
predicted by the standard inflationary cosmology. In particular, the power of
the quadrupole moment of the CMB fluctuations is remarkably low, and the
quadrupole and octopole moments are aligned mutually and with the geometry of
the Solar system. It has been suggested in the literature that microwave sky
pollution by an unidentified dust cloud in the vicinity of the Solar system may
be the cause for these anomalies. In this paper, we simulate the thermal
emission by clouds of spherical homogeneous particles of several materials.
Spectral constraints from the WMAP multi-wavelength data and earlier infrared
observations on the hypothetical dust cloud are used to determine the dust
cloud's physical characteristics. In order for its emissivity to demonstrate a
flat, CMB-like wavelength dependence over the WMAP wavelengths (3 through 14
mm), and to be invisible in the infrared light, its particles must be
macroscopic. Silicate spheres from several millimetres in size and carbonaceous
particles an order of magnitude smaller will suffice. According to our
estimates of the abundance of such particles in the Zodiacal cloud and
trans-neptunian belt, yielding the optical depths of the order of 1E-7 for each
cloud, the Solar-system dust can well contribute 10 microKelvin (within an
order of magnitude) in the microwaves. This is not only intriguingly close to
the magnitude of the anomalies (about 30 microKelvin), but also alarmingly
above the presently believed magnitude of systematic biases of the WMAP results
(below 5 microKelvin) and, to an even greater degree, of the future missions
with higher sensitivities, e.g. PLANCK.Comment: 33 pages, 9 figures, 1 table. The Astrophysical Journal, 2009,
accepte