72 research outputs found

    Noise reduction in protein-protein interaction graphs by the implementation of a novel weighting scheme

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent technological advances applied to biology such as yeast-two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of protein interaction networks. These interaction networks represent a rich, yet noisy, source of data that could be used to extract meaningful information, such as protein complexes. Several interaction network weighting schemes have been proposed so far in the literature in order to eliminate the noise inherent in interactome data. In this paper, we propose a novel weighting scheme and apply it to the <it>S. cerevisiae </it>interactome. Complex prediction rates are improved by up to 39%, depending on the clustering algorithm applied.</p> <p>Results</p> <p>We adopt a two step procedure. During the first step, by applying both novel and well established protein-protein interaction (PPI) weighting methods, weights are introduced to the original interactome graph based on the confidence level that a given interaction is a true-positive one. The second step applies clustering using established algorithms in the field of graph theory, as well as two variations of Spectral clustering. The clustered interactome networks are also cross-validated against the confirmed protein complexes present in the MIPS database.</p> <p>Conclusions</p> <p>The results of our experimental work demonstrate that interactome graph weighting methods clearly improve the clustering results of several clustering algorithms. Moreover, our proposed weighting scheme outperforms other approaches of PPI graph weighting.</p

    A specification-based QoS-aware design framework for service-based applications

    Get PDF
    Effective and accurate service discovery and composition rely on complete specifications of service behaviour, containing inputs and preconditions that are required before service execution, outputs, effects and ramifications of a successful execution and explanations for unsuccessful executions. The previously defined Web Service Specification Language (WSSL) relies on the fluent calculus formalism to produce such rich specifications for atomic and composite services. In this work, we propose further extensions that focus on the specification of QoS profiles, as well as partially observable service states. Additionally, a design framework for service-based applications is implemented based on WSSL, advancing state of the art by being the first service framework to simultaneously provide several desirable capabilities, such as supporting ramifications and partial observability, as well as non-determinism in composition schemas using heuristic encodings; providing explanations for unexpected behaviour; and QoS-awareness through goal-based techniques. These capabilities are illustrated through a comparative evaluation against prominent state-of-the-art approaches based on a typical SBA design scenario

    Clinical Utility of Cardiovascular Magnetic Resonance Imaging for Diagnosis of Acute Myocarditis

    Get PDF
    Cardiac magnetic resonance imaging (CMR) is a novel imaging technique that may help differentiate between myocarditis and acute coronary syndrome and compares favorably to other imaging techniques because it also provides information on tissue consistency and characteristics. We herein present a case, whereby CMR was most useful in providing such a differential diagnosis

    Clinical Utility of Cardiovascular Magnetic Resonance Imaging for Diagnosis of Acute Myocarditis

    Get PDF
    A 49 year-old patient with past medical history significant for arterial hypertension (treated with telmisartan 80 mg daily), presented to the emergency department with 18-hour gastric discomfort and fatigue. Five days prior to this presentation the patient had an episode of febrile gastroenteritis. The evening prior to presentation the patient had blood chemistries performed at an outside institution, where an increase of myocardial enzymes (troponin and CPK-MB) were noted. On presentation the patient was uncomfortable due to abdominal pain, but the clinical examination was almost normal. Blood pressure was 150/80 mmHg and heart rate was 60 beats/min. Cardiac S1 and S2 sounds where audible, without additional cardiac tones, murmurs, pericardial or pleural friction. There was no jugular venous distention, rales or peripheral edema present. Admission 12-lead electrocardiogram (ECG) demonstrated normal sinus rhythm with a rate of 60 beats/min, and early repolarization pattern with a slight J-point elevation in the lateral leads (I, aVL, V5, V6)

    Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi-enzyme complexes in Escherichia coli

    Get PDF
    The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases

    Gene Network Analysis of Bone Marrow Mononuclear Cells Reveals Activation of Multiple Kinase Pathways in Human Systemic Lupus Erythematosus

    Get PDF
    Background: Gene profiling studies provide important information for key molecules relevant to a disease but are less informative of protein-protein interactions, post-translational modifications and regulation by targeted subcellular localization. Integration of genomic data and construction of functional gene networks may provide additional insights into complex diseases such as systemic lupus erythematosus (SLE). Methodology/Principal Findings: We analyzed gene expression microarray data of bone marrow mononuclear cells (BMMCs) from 20 SLE patients (11 with active disease) and 10 controls. Gene networks were constructed using the bioinformatic tool Ingenuity Gene Network Analysis. In SLE patients, comparative analysis of BMMCs genes revealed a network with 19 central nodes as major gene regulators including ERK, JNK, and p38 MAP kinases, insulin, Ca2+ and STAT3. Comparison between active versus inactive SLE identified 30 central nodes associated with immune response, protein synthesis, and post-transcriptional modification. A high degree of identity between networks in active SLE and non-Hodgkin's lymphoma (NHL) patients was found, with overlapping central nodes including kinases (MAPK, ERK, JNK, PKC), transcription factors (NF-kappaB, STAT3), and insulin. In validation studies, western blot analysis in splenic B cells from 5-month-old NZB/NZW F1 lupus mice showed activation of STAT3, ITGB2, HSPB1, ERK, JNK, p38, and p32 kinases, and downregulation of FOXO3 and VDR compared to normal C57Bl/6 mice. Conclusions/Significance: Gene network analysis of lupus BMMCs identified central gene regulators implicated in disease pathogenesis which could represent targets of novel therapies in human SLE. The high similarity between active SLE and NHL networks provides a molecular basis for the reported association of the former with lymphoid malignancies

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
    corecore