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Abstract Effective and accurate service discovery and com-
position rely on complete specifications of service behaviour,
containing inputs and preconditions that are required before
service execution, outputs, effects and ramifications of a
successful execution and explanations for unsuccessful exe-
cutions. The previously defined Web Service Specification
Language (WSSL) relies on the fluent calculus formalism
to produce such rich specifications for atomic and compos-
ite services. In this work, we propose further extensions
that focus on the specification of QoS profiles, as well as
partially observable service states. Additionally, a design
framework for service-based applications is implemented
based on WSSL, advancing state of the art by being the first
service framework to simultaneously provide several desir-
able capabilities, such as supporting ramifications and partial
observability, as well as non-determinism in composition
schemas using heuristic encodings; providing explanations
for unexpected behaviour; and QoS-awareness through goal-
based techniques. These capabilities are illustrated through
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a comparative evaluation against prominent state-of-the-art
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1 Introduction and motivation

The paradigm of service-oriented computing (SOC) is based
on abstracting away from traditional software delivery mod-
els and considering software and related data as services
available on demand [32], while promoting design princi-
ples such as reusability and composability. Such principles
directly depend on the availability of rich service descriptions
which cover both functional and non-functional aspects and
which must be written in a formal, well-defined language
in order to allow for automated discovery, verification and
composition of the produced specifications [35]. Specifying
service behaviour formally relies, among others, on express-
ing conditions that should hold before and after service
execution, which gives rise to a family of problems, known
in the AI literature as the frame, ramification and qualifica-
tion problems [31]. These problems concern themselves with
the representation of non-effects, knock-on or indirect effects
and external or unforeseen preconditions, respectively.

To address these problems and achievewhat can be termed
as representation completeness, we previously proposed the
Web Service Specification Language (WSSL) [6]. WSSL is
independent of specific service designmodels and is founded
on the fluent calculus [37], a formalism that offers integrated
solutions to the frame, ramification and qualification prob-
lems. Additionally, we introduced an extension to WSSL [7]
to enable the specification and generation of service compo-
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Fig. 1 Composite process for the motivating scenario

sitions via planning based on logic programming in the fluent
calculus, including support for non-deterministic patterns.

While the initial definition of WSSL allows for a com-
plete representation of the behaviour of any service-based
application (SBA), it is not yet capable of dealing with the
real-world needs of designing SBAs based on an expressive
specification language. To illustrate these needs, we present a
smart mobility and tourism scenario, first defined within the
CHOReVOLUTION project [29]. In this scenario, tourists
require assistance in finding a place to eat, given their loca-
tion and profile. A suitable SBA should search for matching
nearby venues, allowing the user to modify preferences if the
results are not satisfactory; the SBA should then book the
chosen venue and compute the best route to it. Figure 1 illus-
trates the ideal composite process for this SBA. Based on the
description in [29], the following requirements are extracted:

1. Functional (a) In terms of inputs, outputs and conditions,
the following 4 should be supported: the designed SBA
should output a feasible route to a nearby restaurant sat-
isfying user’s preferences, given the user’s name as an
input, under the condition that the user has activatedGPS.
(b) The SBA needs to combine functionality from exist-
ing services, ensuring that no conflicts arise between their
preconditions and direct or indirect effects. (c) Complex
and non-deterministic control constructs, such as paral-
lel and conditional execution, should be exploited where
possible. (d) The designed SBA should assume usersmay
have partial/limited knowledge given that they are visi-
tors in the area.

2. Non-functional The following 8 constraints need to be
satisfied: filtering available restaurants and route calcula-
tion times should not exceed 3 and 5s, respectively, while
only free location services that achieve 99% availabil-
ity should be used; overall throughput should be at least
100 requests per second, and all services included must
be secured using the X.509 protocol and must support
exception handling as well as the operation semantics of
executing each request at least once.

3. Other (a) Executions of the designed SBA should be
verifiable, providing explanations for abnormal cases

and considering unforeseen circumstances (e.g. system
failure). (b) Alternative bindings for services should be
considered in the designed SBA. (c) Services that vio-
late functional or non-functional requirements should be
discarded early. (d) If more than one SBA realise the sce-
nario, a means of ranking them should be provided.

To satisfy requirements 1a-c and 3a, a representation-
ally complete language that supports correctness verification,
such as WSSL, is necessary since languages such as OWL-
S [28] or WSML [38] are unable to: (1) model and reason
about indirect effects, e.g. that booking a table in a restau-
rant indirectly leads to a request for computing the best route
to reach it; (2) verify that the SBA executed correctly, or
explaining why it did not, e.g. explain that failure is due to
an error in the user’s GPS or the restaurant booking system.
If these requirements are not satisfied, the resulting SBAs
would only capture part of the intended functionality and
no troubleshooting would be possible in case of an unsuc-
cessful execution. Requirement 1d can only be satisfied by a
service composition approach that supports partial observ-
ability, capable of producing composite services even under
incomplete knowledge, e.g. even without knowing whether
the user’s GPS is active. Failing to address this requirement
leads to designed SBAs that are only applicable when there
is complete knowledge of all states from start to finish, which
cannot always be expected. Finally, to satisfy requirements
2 and 3b-d, the composition approach should also be QoS-
aware and support ranking of produced SBAs.

While there have been numerous approaches that either
possess one or only some of the highlighted features (more
details in Sect. 2), to the best of our knowledge there is
no SBA design framework that is capable of simultaneously
supportingQoS-awareness, partial observability and correct-
ness, not to mention relying on a representationally complete
language. As argued by Lemos et al. [25], attempting to com-
bine heterogeneous components relying on different, often
semantically unrelated languages and notations leads to frag-
mentation of modelling, analysis and reasoning and breaks
the maxim of sound design and engineering. Instead, we pro-
pose to build an integrated, end-to-end framework for SBA
design that supports all the aforementioned features by rely-
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ing on an extended version of WSSL which can achieve a
unified representation of all service-related aspects.

Two WSSL extensions are introduced. The first involves
expressing non-functional aspects through the specifica-
tion of QoS profiles, additionally formalising correctness
verification and defining aggregation formulas. The sec-
ond extension deals with partial observability by allowing
for the modelling of incomplete service states via con-
straints, as well as introducing the formalisation of knowl-
edge states, i.e. states that may be possible according
to our state knowledge. The proposed framework, named
WSSL/SDF, makes full use of the extended version of
WSSL and is accompanied by WSSL/TOOLS, a toolset
to assist designers who have little to no knowledge of
employing such a highly expressive language. WSSL/SDF
combines the following features in an innovative and unified
manner (while satisfying the scenario requirements shown
in brackets):

– Composition allows for service and goal specifications
that include preconditions, effects, ramifications and
complex control constructs (reqs. 1a-c).

– The produced SBAs are automatically verified via proofs
of correctness, also providing explanations for unex-
pected observed behaviour (req. 3a).

– QoS-awareness is achieved by pruning based on task-
specific QoS goals and optimisation based on global QoS
goals and aggregation formulas (req. 2).

– SBAs can be produced even when some states (e.g. the
initial one) are partially observable (req. 1d).

– Functional discovery is realised via behavioural state-
based matchmaking, ranking functionally equivalent
SBAs based on a combination of domain-independent
and problem-specific criteria. Produced SBAs can be
dynamically linked (at run-time) to different service
implementations, provided these conform to the respec-
tive WSSL specifications (reqs. 3b-d).

The remainder of this article is structured as follows.
Section 2 offers a concise analysis of related work, while
Sect. 3 summarises the formal definition of WSSL, as pre-
sented in [6,7]. Section 4 introduces WSSL extensions
for the specification of QoS profiles and handling partial
observability throughknowledgemodelling.WSSL/SDFand
WSSL/TOOLS are defined and analysed in Sect. 5, while
Sect. 6 evaluates how WSSL/SDF improves on state of the
art. Section 7 concludes and points out future research direc-
tions.

2 Related work

The proposed framework spans a wide spectrum of topics
within service science research, from description and design,
to discovery, composition and verification. In this section,

we focus only on research that is directly relevant to the
stated contributions of this paper. Specifically, we focus on
QoS-aware frameworks for services and SBAs, while also
looking at the few research efforts that support some form of
representation completeness.

2.1 QoS-aware service frameworks

One of the earliest comprehensive QoS-aware frameworks is
PAWS [3], focusing on the adaptation and flexibility of ser-
vice compositionsmodelled as business processes.Designers
create a BPEL process which is then annotated with global
and local constraints that usually refer to QoS aspects. For
each task in the created process, a service retrieval module
attempts to find services that have the required interface and
do not violate any constraints. If no exact interface matches
are found, a mediator is used to reconcile the interface dis-
crepancies. PAWS also supports self-healing, allowing for
faulty services to be substituted by other candidate services
and at the same time enabling recovery actions to undo
the results of the faulty services. As is common with ear-
lier service composition frameworks, PAWS relies only on
WSDL [10] interfaces, disregarding preconditions and post-
conditions.

Subsequent works successfully integrated conditions in
service composition, with the most prominent examples
being [24] and [4], both relying on OWL-S. [24] uses
so-called causal links to determine whether functional or
non-functional characteristics of services match. A causal
link matrix (CLM+) is constructed, containing all possi-
ble matches and the composition approach relies on it to
incrementally satisfy the service request, starting from the
required outputs and postconditions andworking backwards.
Further work [12] expands on this approach, but drops
support for non-functional aspects. [4] proposes a hierarchy-
based dynamic composition approach that relies on planning
knowledgeorganised as task hierarchies anddecompositions.
In contrast to HTN planning and similarly to our approach, a
task at any level of granularity can be mapped to a concrete
service. Pruning is performed on both task and plan levels
based onQoS constraints to reduce search space and increase
performance. Our approach improves on these techniques by
adding a ranking phase so that, potentially, not all candidate
plans go through the QoS-based selection process. Addition-
ally, in contrast to our approach, neither [24] nor [4] consider
plans more complex than trivial sequences.

A few QoS-aware frameworks manage to combine sup-
port for pre-/postconditions and complex control constructs.
[39] proposes a composition schema generation process
that focuses separately on data flow, functional and non-
functional requirements. Both requests and produced com-
positions are modelled as statecharts, supporting parallel,
conditional and iterative execution. [34] introduces VCL, a
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composition language that supports both functional and non-
functional constraints but, in contrast to WSSL, does not
support either ramifications or qualifications. A structured
composition that may include parallel and conditional con-
trol constructs is produced based on a dependency graph that
models a VCL request. QoS-based selection is performed by
either solving a constraint satisfaction problem or via inte-
ger programming techniques. Finally, Mabrouk et al. [26,27]
rely on graph-based techniques to first produce a set of com-
position plans that satisfy functional and task-specific QoS
constraints. Then, candidate services for each task are clus-
tered according to the achieved quality levels and a selection
algorithm aggregates QoS values for each plan and selects
those that respect global QoS constraints.

A common characteristic of all the aforementioned
approaches is that while they successfully achieve QoS-
awareness, they do not address the equally important require-
ments of partial observability and correctness. At the same
time, works that address these individually (indicatively
see [8] for partial observability and [15] for correctness)
do not combine them and are not QoS-aware. Indeed, these
approaches cannot produce an SBA design if, for instance,
the request does not fully specify the initial state; also, they do
not offer any way of systematically verifying the behaviour
of the produced compositions. Hence, they are unable to
fully satisfy the requirements of the motivating scenario as
analysed in Sect. 1. In contrast, WSSL/SDF can take into
account partially specified information thanks to the exten-
sion described in Sect. 4.2 and can conduct verification of
either the functionality of a plan (see Sect. 5.1) or the run-
time behaviour of the produced SBA (see Section 5.4). To the
extent of our knowledge, WSSL/SDF is the only QoS-aware
service framework that can also support partial observability,
correctness verification and representation completeness.

2.2 Representation completeness

None of the aforementioned frameworks takes into account
any of the frame, ramification and qualification problems.
The only other line of service research, to the extent of
our knowledge, that attempts to achieve representation com-
pleteness is the work of Hoffmann et al. [16], which uses
the possible models approach to address the representational
facets of the frame and ramification problems. However, as
stated by the authors, this solution is inadequate for prob-
lems that incorporate the notion of causality (such as the one
in our motivating scenario); on the contrary, the solutions
exploited by WSSL rely explicitly on causality and address
both the representational and the inferential facet of the frame
problem [36]; this allows any WSSL-based framework to be
more effective in inferring state change. Furthermore, [16]
does not address the qualification problem, and the compo-
sition approach is not QoS-aware and targets a restrictive

subset of services (which excludes services in the motivating
scenario).

Few works have employed fluent calculus logic pro-
gramming to compose services, with the most prominent
being [18]. In contrast to our proposal, this work does not
address the ramification and qualification problems, failing to
capitalise on the benefits of their solutions.Moreover, no con-
trol constructs other than sequence and AND-Split/Join [17]
are supported. Finally, inputs and outputs are represented
using the fluent calculus constructs that model knowledge
states. This can cause issues as it equates requiring an input
and producing an output to fluents entailed by all possible
states and creates conflicts when one attempts to model par-
tially observable states (more in Sect. 4.2).

3 WSSL: web service specification language

This section provides a concise summary of WSSL, the lan-
guage used as a foundation for the proposed SBA design
framework.1 WSSL uses the fluent calculus as its logical
foundation; the basic fluent calculus notions follow, viewed
from a service science perspective. A fluent is an atomic
property which may change as a result of a service execu-
tion, represented by an action. A state is a fluent set that
models a snapshot of the environment; macro Holds( f, z)
denotes that state z contains fluent f . A situation is a history
of service executions,with function Statemapping a situation
to the state of the environment resulting after these execu-
tions. A first-order formula �(z) made of Holds expressions
is called a state formula, if z is the only free state variable.
A situation formula �(s) is defined equivalently.

The design of WSSL is driven by WSDL and Semantic
Web services, but the language is capable of specifying any
SBA behaviour that can be expressed in the form of con-
ditions that should hold before and after service execution.
Apart from the abstract syntax defined here, an XML syntax
has also been defined in order to provide machine readability
and facilitate exchange of WSSL documents on the Web.

A WSSL specification is defined as a 7-tuple S =
〈Service, Input,Output, Pre, Post,Causal,Default〉. A descrip-
tion of these components follows. Service contains general
information, e.g. service names and optional service ground-
ing details. Input and Output represent inputs and outputs
using two reserved unary fluent functions, Has Input and
HasOutput , denoting input availability and output produc-
tion, as follows:

Definition 1 An input formula is a first-order formula I (z)
composed of Holds formulas on free state variable z, con-

1 For a complete analysis of the language definition and its extension
for service composition and verification, please refer to [6] and [7],
respectively.

123



SOCA

sisting exclusively of Has Input fluents. An output formula
is defined equivalently.

Pre and Post represent preconditions and postconditions
using axioms defined as follows:

Definition 2 An action precondition axiom for A(x) is a
formula Poss(A(x), s) ≡ �A(x, s), meaning that action
A is possible at situation s iff formula �A is true. A state
update axiom is a formula Poss(A(x), s) → (∃y)(�(s) ∧
State(Do(A(x), s)) = State(s) + θ+ − θ−); its semantics
is: provided that A is possible at situation s, execution results
in a state produced by adding fluents that have beenmade true
(positive effects θ+) and subtracting falsified ones (negative
effects θ−), under optional additional conditions �(s).

For instance, inputs and outputs for the Get Restau-
rants task of the motivating scenario can be expressed as
Has Input (user_location) and HasOutput (rest_list),
respectively; its precondition is then Located(username)
and its postcondition is Veri f ied(rest_list). Under the
assumption that θ+ and θ− are disjoint (i.e. a service execu-
tion does not create and cancel the same effect), state update
axioms are a provably correct solution to the frame problem
(see Chapter 1 in [37]).

Causal contains a set of causal relationships which link
effects tomodel ramifications (implicit, knock-on, or indirect
effects). In contrast to the definition in [37], WSSL rami-
fications are not chained arbitrarily, since services are not
expected to exhibit such behaviour.

Definition 3 A causal relationship is defined as a formula
(∀)(� → Causes(z, p, n, z′, p′, n′, s) with the semantics
that, under conditions expressed by formula �, positive and
negative effects p and n that have occurred cause an update
from state z to z′, with positive and negative effects p′
and n′. Inferring ramifications is expressed by the following

macro: Rami f y(z, p, n, z′, s) de f= (∃p′, n′)(Causes(z−n+
p, p, n, z′, p′, n′, s).

For instance, to express the ramification of produc-
ing a routing request after a restaurant has been booked,
we use the following: Causes(z, Veri f ied(booking), n, z
+RouteRequest (booking), p+ RouteRequest (booking), n, s). To
address the qualification problem, unforeseen circumstances
aremodelled through the predicate Acc(c, s) (accident c hap-
pened in situation s), e.g. define a c = BookingError to
represent failure to book a restaurant using the Choose And
Book task of the motivating scenario. Finally, Default is a
default theory formalising qualifications for service execu-
tion: accidents (i.e. unexpected situations) do not happen
except if we cannot do otherwise. The simplest default the-
ory only contains a universal default on the non-occurrence
of all accidents.

To support composite service specification, fundamental
control constructs (based on the patterns defined in [17])
are modelled using a set of function symbols, denot-
ing sequence, conditional execution, AND-Split/Join, OR-
Split/Join, XOR-Split/Join and iterative execution. Founda-
tional axioms are defined for the newly introduced function
symbols, encoding preconditions and postconditions for
each control construct. For instance, Poss(a1 · a2, s) →
State(Do(a1 · a2, s)) = State(Do(a2, s)) + θ+

1 − θ−
1 =

State(s) + θ+
2 − θ−

2 + θ+
1 − θ−

1 states that AND-Split/Join
results in a statewhere the effects of both services are applied.

4 WSSL extensions

This section proposes two extensions to the definition of
WSSL, targeting specification of QoS profiles and handling
partial observability via incomplete state and knowledge
modelling.

4.1 Quality of service

By definition, any WSSL term can be associated with con-
cepts defined in knowledge representation models, including
ontology-based QoS models. For the purpose of QoS-
awareness, we associate WSSL with quality models defined
using OWL-Q [21], a semantic, rich and extensible meta-
model for describing QoS attributes, metrics, requirements
and capabilities.

WSSL specifications, as defined so far, are purely func-
tional. Such specifications can be linked to one or more
sets of QoS capabilities, collectively known as QoS profiles,
representing the non-functional aspects exhibited by differ-
ent implementations of the same functionality (e.g. multiple
geolocation services with different QoSmay exist for theGet
Location task of the motivating scenario). Alternatively, dif-
ferent QoS profiles may refer to the same implementation, if
we want to model classes of service, i.e. different QoS levels
provided to consumers according to their needs and/or what
they can afford. To support both cases, a WSSL specification
needs to be linked to a QoS profile; to that end, we extend
the definition in Sect. 3 to an 8-tuple, by including a Qual-
ity tuple which represents the aforementioned QoS profiles,
defined as follows:

Definition 4 A QoS profile P is a non-empty, conjunctive
set C of constraints of the form <QoS term><comparison-
operator><value>, where a QoS term is an attribute or a
metric, as defined in OWL-Q.

To represent decimal QoS values and comparison, we
introduce a new sort named DECIMAL and a set of compar-
ison operators: {<,≤, �=,≥,>} (= is already part of WSSL
expressions). For instance, a QoS profile for the Get Best
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Route task of the motivating scenario would state that it
achieves throughput of at least 50 requests/sec for a cost
of 3 units, by including the following: owlqmodel#cost =
3∧ owlqmodel#throughput ≥ 50, with owlqmodel refer-
ring to an OWL-Q QoS model. Local, task-based constraints
would also need to be associated with the name of the task
they correspond to. Note that we assume, for reasons of
simplification, that all numeric values of QoS terms are deci-
mals, with integers represented as decimals with a fractional
part equal to zero. However, OWL-Q models may contain
value type information attached to QoS terms which can be
exploited by introducing additional constraints to represent
the domain of values of these terms.

QoS attributes can be distinguished intomeasurable, using
one or more QoS metrics, or unmeasurable ones, mod-
elling static information that is qualitative in nature. While
measurable attribute values are expressed using decimals,
unmeasurable ones can also be represented as IRIs. For
instance, robustness/flexibility, as defined in [33], can have
the value set {inflexible, flexible, very-flexible}; these values
can be modelled either by an IRI set, with one IRI per value,
or by the set {0, 1, 2}, provided that a suitable mapping from
possible attribute values to decimals exists.

WSSLQoSprofiles can be extracted fromSLAdocuments
attached to concrete service implementations and expressed
in languages such as WSLA [19] and WS-Agreement [1].
To achieve that, a baseline OWL-Q model can be used as a
starting point, extending it with each new metric captured
within the SLA document; all constraints contained in the
document can then be straightforwardly converted to aWSSL
QoS profile. To make sure that we do not add a metric that
is equivalent to those already included, an alignment process
has to be applied before adding each constraint, such as the
one proposed in [22].

Given one or more QoS profiles, we need to identify (1)
whether a profile is incorrect, leading to incorrect solutions,
unsolvable problems or solving a different problem, and (2)
whether one profile violates another, to determine whether
a service implementation violates a QoS goal. The follow-
ing definitions formalise these actions relying on constraint
programming notions [13]:

Definition 5 Let P be a QoS profile, containing a set C of
constraints and a constraint problem defined by C , a set V
containing a single variable for each distinct term and a set D
of domain values for each of these terms. Each domain value
is derived by the respective term definition in the associated
OWL-Qmodel. Let also SP be the solution space (i.e. the set
of all solutions) of the constraint problem associated with P .
Then, P is incorrect iff SP is an empty set.

Definition 6 Consider two QoS profiles P and G defined as
in Definition 5, with solution spaces SP and SG , respectively.

Table 1 Correctness violations among constraints

Constraint 1 Constraint 2 Values Relation

x = value1 x = value2 value1 �= value2

x = value1 x �= value2 value1 = value2

x = value1 x < value2 value1 ≥ value2

x = value1 x > value2 value1 ≤ value2

x = value1 x ≤ value2 value1 > value2

x = value1 x ≥ value2 value1 < value2

x < value1 x > value2 value1 ≤ value2

x ≤ value1 x > value2 value1 ≤ value2

x ≥ value1 x < value2 value1 ≥ value2

x ≤ value1 x ≥ value2 value1 < value2

P violates G if there is a solution in SP that is not in SG ,
expressed similarly to [11] as SP ∩ S′

G �= ∅.
These definitions essentially translate to a pairwise check

of constraints that refer to the same term, detecting violations
when values are related as shown in Table 1, where terms are
represented by variable x .2

4.1.1 QoS aggregation for composite SBAs

The WSSL QoS profiles discussed so far refer to atomic
services. When such services are composed into an SBA,
their individual profiles need to be considered in combi-
nation to infer a QoS profile for the complete SBA. This
problem has been handled in the literature by aggregation
functions depending on particular metrics and composition
patterns. However, not all metrics supported by OWL-Q and
not all composition patterns supported byWSSL are covered
in existing work (e.g. [9,14,17,26,34]). To address this, we
propose a set of generalised QoS aggregation functions, as
shown in Table 2. xa denotes the aggregated value, while xi
denotes the advertised (or measured) value for each atomic
service, or the value of the worst-case bound, if a range of
values is offered. In caseswhere alternative values are offered
(someOR/XORcases, reputation and throughput), the choice
is left to the designer. Also, deterministic loops are treated
as sequences of length equal to the maximum number of
iterations, defined by the loop variant.

A brief analysis of the categories in Table 2 follows.
Unmeasurable attributes are grouped based on their value
type in the following three categories: (1) Boolean, con-
taining properties that are either supported or not by a
service (e.g. safety), for which aggregation involves deter-
mining whether the particular property is supported by all

2 Definition 4 and Table 1 cover only single-valued terms. An extension
to also include set operators is provided in Appendix B.1 (supplemen-
tary material).
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Table 2 Categorisation and Aggregation of QoS terms

QoS term categories Composition patterns

Sequence Det. loop AND-Split/AND-Join OR-Split/OR-Join XOR-Split/XOR-Join

Measurable

Temporal xa = ∑n
i=1 xi xa = max{x1, . . . , xn} xa = min{x1, . . . , xn} or

Probabilistic xa = ∏n
i=1 xi xa = ∏n

i=1 xi xa = max{x1, . . . , xn}
Throughput xa = min{x1, . . . , xn} or xa = min{x1, . . . , xn} or xa = min{x1, . . . , xn} or

xa = max{x1, . . . , xn} xa = max{x1, . . . , xn} xa = max{x1, . . . , xn}
Cost xa = ∑n

i=1 xi xa = ∑n
i=1 xi xa = ∑n

i=1 xi

Reputation xa = avg{x1, . . . , xn} or xa = avg{x1, . . . , xn} or xa = avg{x1, . . . , xn} or
xa = min{x1, . . . , xn} xa = min{x1, . . . , xn} xa = min{x1, . . . , xn}

Unmeasurable

Boolean xa =
{

f alse, ∃i · (xi = f alse)
true, otherwise

xa =
{

f alse, ∃i · (xi = f alse)
true, otherwise

xa =
{

f alse, ∃i · (xi = f alse)
true, otherwise

Ordered set xa = min{x1, . . . , xn} xa = min{x1, . . . , xn} xa = min{x1, . . . , xn}
Unordered set xa = ⋂n

i=1 xi xa = ⋂n
i=1 xi xa = ⋂n

i=1 xi

services participating in the composition; (2) Ordered Set,
e.g. robustness/flexibility [33], for which aggregation trans-
lates to finding the lowest-ordered one, which represents
the lowest level shared by all participating services; and (3)
Unordered Set, e.g. failure masking and operation semantics,
as defined in [21], for which aggregation requires calculating
the intersection of the value sets of all participating services.

While aggregation is pattern independent for unmeasur-
able attributes, this is not always the case for measurable
attributes, which are categorised as follows:

– Temporal For attributes/metrics of temporal nature (e.g.
execution time), the aggregate value represents theworst-
case scenario, i.e. the sum for sequential, the maximum
for AND-Split/Join and a min-max pair of values for OR
and XOR, since the selected branches are unknown at
design time.

– Probabilistic The aggregation of attributes such as avail-
ability and completeness involves applying the multipli-
cation rule of probability (i.e. taking the product of all
values) for sequences andANDpatterns and again amin-
max pair for OR and XOR.

– Throughput For attributes/metrics such as throughput
and bandwidth, aggregation corresponds to finding the
process bottleneck, represented by the minimum or max-
imum value, for positively or negatively monotonic
metrics, respectively.

– Cost For the attribute of cost, aggregation is directly
dependent on the cost model of each service provider; for
simplicity, we assume monthly fees are charged, which
leads to additive aggregation regardless of the composi-
tion pattern.

– ReputationFor this attribute, aggregation is performed by
calculating either the minimum value, or the mean value,
if constraints concern the average reputation achieved by
the SBA as a whole.

4.2 Partial observability

The second proposed extension involves partial observabil-
ity with respect to WSSL states. There are three main causes
of partial observability in service specification: (1) atomic
services with non-deterministic outcomes, i.e. due to a state
update axiom containing disjunction in the implication con-
sequent; (2) composite services including conditional and
non-deterministic iterative control constructs (like in Fig. 1);
(3) partial knowledge of a state (initial or otherwise), e.g. in
ourmotivating scenario, we do not know beforehandwhether
users will modify their preferences. Failing to recognise
such cases leads to SBAs that partially ignore the expected
behaviour of the SBA or composition approaches that can-
not yield any results unless they are supplied with a complete
specification of the initial state.

We propose two levels of handling partial observability.
The lower level requires minimal modifications and is based
on the generalised notion of an incomplete state, which is
essentially a state defined using constraints. Three flavours
of constraints are supported:

– Negation Constraints of the form ¬Holds( f, z), suit-
able when we want to express that at a particular state, a
property represented by f should not hold. For instance,
to express that the Filter List task cannot be executed
with an empty list as input, we use the constraint
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¬Holds(Empty(rest_list), zin), with zin denoting the
state before execution.

– Universal quantification A variant of the first case,
formulated as (∀y)¬Holds( f, z), that is applicable to
fluents with multiple arguments to express that f does
not hold for all values of argument y.

– DisjunctionConstraints of the form Holds( f1, z)∨ . . .∨
Holds( fn, z), particularly useful to model states that
may or may not involve a particular fluent. For instance,
constraint Holds(GPSActive, ?z_in)∨
Holds(WiFiConnected, ?z_in) states that the Get
Location task may work using different sources.

State update axioms are slightly modified to support
incomplete states with constraints: Poss(A(x), s) → (∃y)
(�(s)∧ (∃z)(State(Do(A(x), s)) = τ ◦ z+θ+ −θ− ∧�)).
Essentially, we are certain that the fluents in τ hold in state
z, the state following execution of A; for any other fluent to
hold in z, it must satisfy constraints �.

The higher level of handling partial observability involves
modellingwhat itmeans to know that a fluent holds.A knowl-
edge state is any state of the world that may be true according
to what we know. If we have complete state knowledge, then
there is only one possible state, the actual one; if we have no
knowledge, all conceivable states are possible. The following
definitions formalise knowledge states and expressions:

Definition 7 Formula K State(s, z) ≡ �(z), is a knowledge
state, defining a possible state z in situation s, under a set of
constraints expressed in state formula �.

Definition 8 A knowledge expression φ is known in a

situation s based on the following: Knows(φ, s)
de f=

(∀z)(K State(s, z) → HOLDS(φ, z))whereφmayconsist
of fluents, stateless Poss predicates of the form Poss(a) and
atoms without state or situation terms, while HOLDS(φ, z)
is obtained by replacing in φ all fluents with a Holds expres-
sion of the form Holds( f, z) and adding state z to all Poss
predicates.

Based on Definition 8, knowing f in situation s equates

to Knows( f, s)
de f= (∀z)(K State(s, z) → Holds( f, z)).

In other words, f holds in all possible states at situa-
tion s. For example, to express that, as far as we know,
location detection is activated at the start of the moti-
vating scenario process, we use the knowledge expres-
sion Knows(Holds(GeolocActive(username), s0)), with
s0 representing the initial situation.Knowledge states are then
used to redefine state update axioms to take possible states
into account, albeit in a simplifiedway as compared to knowl-
edge modelling in Chapter 5 of [37]. This is due to the fact
that this modelling differentiates between physical and cog-
nitive effects, which is relevant to autonomous robotic agents

but not SBAs. In the case of services, knowledge acquisition
is neither a physical nor a cognitive effect, at least in the way
defined for robotic agents. Thus, we propose to retain the
initial way of modelling effects that lead from one state to
the next: as an addition and/or subtraction of fluents.

Definition 9 A knowledge update axiom for action A is
expressed as a formula Poss(A(x), s) → (∃y)(�(s) ∧
K State(Do(A(x), s), z′) ≡ (∃z)(K State(s, z) ∧ z′ =
z + θ+ − θ−)). A knowledge update axiom with ramifi-
cations is defined accordingly based on the Ramify macro:
Poss(A(x), s) → (∃y)(�(z)∧K State(Do(A(x), s), z′) ≡
(∃z)(K State(s, z)∧ Rami f y(z, θ+, θ−, z′, Do(A(x), s))).

Essentially, handling partial observability amounts to
replacing state update axioms with their knowledge update
counterparts and employing knowledge states to express ini-
tial or subsequent states that are not completely defined. The
SBAdesigner needs only define the constraints that represent
this incomplete knowledge.

5 WSSL/SDF: SBA design framework

In this section, we present WSSL/SDF, a framework for
designing SBAs based on WSSL specifications, using the
extensions in Sect. 4 to support QoS-awareness and par-
tial observability, while also exploiting WSSL to achieve
representation completeness, automation and correctness
verification. The envisioned SBA design approach using
WSSL/SDF is shown in Fig. 2. A request is provided by
an SBA designer in the form of a WSSL specification that
describes the functional and non-functional aspects of the
SBA. The request can be formed directly, if requesters are
familiar with WSSL syntax, or via WSSL/TOOLS, as out-
lined in Sect. 5.5; in that case, they are assisted in the creation
of WSSL documents, possibly relying on existing descrip-
tions in other languages. The request is fed to the main
framework components, whose objective is to facilitate the
design process by offering a semi-automatic way of navigat-
ing through the numerous decisions within them. An analysis
of these components follows.

5.1 Functional composition and verification

We adopt a divide-and-conquer approach, performing func-
tional and non-functional composition separately, mainly to
avoid the increased cost of backtracking in planning when
considering all aspects at once (see also the relevant dis-
cussion in Chapter 6 of [37]). Separation also allows for
the production of non-concretised processes, with tasks only
associated with specifications; this is essential for support-
ing dynamicity, especially when we want to design SBAs
that should achieve different, customer-specific QoS levels.
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Fig. 2 Envisioned SBA design approach using WSSL/SDF

The first phase is realised using the implementation of
WSSL in FLUX and the ECLi PSe constraint programming
system [2]; it is a streamlined and updated version of the
system presented in [7], where details on the formalisation
of WSSL composition as a planning problem in FLUX can
be found. The new version is again a customisation of the
original FLUX kernel [37] and implements all (functional)
WSSL features, applying the following: (1) simplifications to
adapt to the service case and increase efficiency (e.g. simpler
form of the Rami f y macro, accidental updates modelled
as disjuncts); (2) modifications, e.g. support for inputs and
outputs in the definition of fluent addition; (3) extensions, e.g.
inclusion of clauses that implement foundational axioms for
control and data flow.

The partial observability extension of WSSL is imple-
mented using the FLUXkernel as two sets of rules: (1) a set of
constraint handling rules for negation, universal quantifica-
tion anddisjunction, and (2) rules that implementDefinition 8
and variants for knowing that a fluent does not hold is a situa-
tion and for fluents with variables. These rules are applied by
ECLi PSe only whenever state update axioms are expressed
using constraints orwhenknowledge update axioms are used,
for any service or request specification.

To reduce the overall planning time, we rely on two
features: (1) a specially designed WSSL repository, where
all specifications that share the same functional part are
grouped under a single abstract task; thus, the planner con-
siders each distinct functionality set only once; (2) heuristic
encodings of the composition problem can be supplied, stat-
ing which control constructs (other than sequence) are to
be considered at which parts of the process; WSSL/SDF

then only has to search for plans that conform to these
encodings. Such encodings can be either derived by domain-
specific knowledge (similar SBAs or past executions of
WSSL/SDF) or explicitly defined by SBA designers, in
case they have some particular expertise in the domain. For
instance, an encoding that requires the parallel execution in
Fig. 1 is expressed by the following Prolog rule (A1 stands
for the sequence of Get Location and Get Restaurants):
plan(Z,[A|P],Z_PR):-A2=getprefs,A=xor(A1,
A2),poss_xor(A1,A2,Z),state_update_xor(Z,
A1,A2,Z_PR) (Appendix A.2 gives a complete heuristic
encoding for the motivating scenario).

After functional composition, an optional verification
phase follows, checking conformance of the plans to cer-
tain properties, such as composability, ensuring there are
no conflicts within a composition plan or liveness and
safety properties, ensuring that a plan realises the requested
behaviour. Thanks to WSSL’s solution to the qualification
problem, WSSL/SDF is able to indicate the task or tasks as
well as the corresponding clauses in the heuristic encoding
that caused the failure, assisting the designer in resolving
such situations.

5.2 Specification-based functional discovery

Composition results in a set of abstract plans, each defined
formally as a non-empty sequence α1, . . . , αn , with each α

corresponding to either an atomic abstract task T , or a com-
posite one, formed by combining one or more abstract tasks
using one or more control constructs. For each task in these
plans, functional discovery is performed, yielding a set of
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extended plans, each formally defined as an abstract plan
where each contained atomic abstract task T is linked with
a sequence S1, . . . , Sn of concrete service implementations.
Matchmaking is formalised as follows:

Definition 10 Given two WSSL specifications T (abstract
task) and S (concrete service), S matches T iff the following
hold:

– Action precondition axioms If Poss(T (x), z) ≡ �T (z) and
Poss(S(x), z) ≡ �S(z), then �S(z) ⇒ �T (z) must hold.
With�T (z) ≡ Holds( fT 1, z)∧...∧Holds( fT n, z) and�S(z) ≡
Holds( fS1, z) ∧ ... ∧ Holds( fSn, z), then �S(z) = �T (z) ≡
{ fT i , ..., fT n} = { fSi , ..., fSn}.

– State update axiomsGiven Poss(T (x), s) ⇒ (∃yT ) (�T (s)∧
State(Do(T (x), s)) = State(s) + θ+

T − θ−
T ) and a similar

axiom for S, then �S(s) ⇒ �T (s) and State(Do(T (x), s)) =
State(Do(S(x), s)) ≡ (θ+

T = θ+
S ) ∧ (θ−

T = θ−
S ) must hold.

– State update with ramifications If Poss(T (x), s) ⇒ (∃yT )

�T (s)∧Rami f y(z, θ+
T , θ−

T , z′) and Poss(S(x), s) ⇒ (∃yS)�S(s)

∧ Rami f y(z, θ+
S , θ−

S , z′) then �S(s) ⇒ �T (s) and (θ+
T =

θ+
S ) ∧ (θ−

T = θ−
S ) must hold, in addition to the following

relation between causal relationships:
– Causal relationships If CRT and CRS are the sets of
causal relationships contained in T and S, respectively,
then CRT ⊆ CRS must hold.

Definition 10 requires that both specifications refer to the
same inputs and preconditions and lead to the same state after
execution, based on exact matches between fluents.3 Func-
tional matchmaking is realised usingWSSL’s FLUX kernels.
For example, FLUXclauseposs(T,Z),Z=[hasinput(usr-
name), gpsactive(usrname)] realises action precondi-
tion matching for candidates T of Get Location. Relying on
specifications raises functional discovery to a higher level,
disregarding implementation details. This is realisable only
if the same specification language is used for all services,
while specifications must refer to the same conceptual mod-
els; otherwise, alignment and transformation phases must
precede discovery, based on translators among specification
languages and adapters that modify a specification to refer
to a different conceptual model.

5.3 Local QoS pruning and ranking

The number and size of extended plans produced in the dis-
covery phase depend primarily on repository size, functional
goal complexity and how elaborate heuristic encodings are.
Pruning and ranking aim at decreasing the size and complex-
ity of the extended plan setwithout compromising optimality.

3 Subsumption, plug-in and other matches can also be supported, pro-
vided that such relations are expressed between fluents representing
service IOPEs, e.g. stating that fSi subsumes fT i .

Pruning removes from extended plans any concrete services
that do not satisfy a local QoS goal (expressed within the
initial SBA request), using Definition 6, with P representing
the QoS profile of the concrete service and G the local goal.
Solution spaces are compared according to Table 1 and rely-
ing on the unary technique introduced in [23]. This technique
uses an ordered set of values for each metric in a constraint
in G, based on the values offered in the QoS profiles. Using
each of these sets, implementations that offer a greater value
(for negatively monotonic metrics such as cost) or a lower
one (for positively monotonic metrics such as availability)
value than the one in G are pruned.

An extended plan is discarded if all implementations for
a single task are pruned. The plans that survive the pruning
process are then ranked to determine the order in which they
are examined in the final phase. We opt to rank shorter plans
higher, since they satisfy the SBA request in less steps; hence,
two ranking criteria are maximum execution path length and
total number of tasks. For both criteria, the calculated score
is the reciprocal of the actual number (length or number of
tasks), leading to maximum scores equal to 1 (for trivial,
single-task plans). In addition to these criteria, there may
be other domain/problem-dependent ones, e.g. in the moti-
vating scenario, plans where the booking process is realised
in a single task may be more preferable, so that sensitive
payment-related information is not accessed by more than
one service.

Problem-dependent criteria are expected to be defined by
designers with experience on the particular domain or prob-
lem, in the form of specific tasks or sub-processes which
the user demands (or prohibits) to be part of the plan. In the
motivating scenario, for instance, plans that allow the user to
change their preferences may be ranked higher. To produce
a total rank score out of the individual scores of the ranking
criteria, the widely used simple additive weighting method is
employed. Weights are attributed uniformly by default, but
other settingsmay be applicable depending on each problem;
for instance, plan complexity may be less important com-
pared to problem-specific ranking criteria, leading to higher
ranking weights for the latter.

Both pruning and ranking are realised by exhaustively
traversing extended plans, either to check for local QoS goal
violations or to evaluate ranking criteria. If an extended plan
comprises n abstract tasks, the complexity of the pruning and
ranking processes is O(n).

5.4 QoS-based selection

Following pruning and ranking, global QoS-based selection
is performed for the remaining extended plans, based on the
QoS profiles included in the specifications of the services
within these plans, until a combination is found that satisfies
all global QoS goals. This combination is essentially an SBA
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design that satisfies all functional and non-functional goals
of the initial request. Global goal matching requires that the
target value of each global goal is compared to an aggregation
of the values achieved by the individual services within the
plan; for instance, in the motivating scenario the SBA cost
must be kept under a specific threshold, so the total cost of all
services in the plan must be aggregated to determine whether
it exceeds the threshold. We use the aggregation functions in
Table 2, parsing plans from start to end in order to calculate
values for all attributes related to global QoS goals.4 QoS-
based selection is then performed using existing algorithms
in the literature. The current implementation of WSSL/SDF
uses the algorithms defined in [20], assuming no knowledge
of execution path probabilities within the plans.5

If performing QoS-based selection on the top-ranked plan
does not yield a solution, the next-ranked plan undergoes the
same process. In the best-case scenario, only the top-ranked
extended plan will need to be examined, reducing overall
execution time. Designers then evaluate the resulting con-
crete SBA, which can be transformed to BPMN or BPEL
using WSSL/TOOLS, and executed. The observed run-time
behaviour of the SBA can also be subjected to verification,
to check whether it conforms to the initial request. In case
conformance fails with regard to functional aspects, possi-
ble explanations can be derived (based on the qualification
problem solution described in Sect. 3), in order to perform
troubleshooting actions.

5.5 WSSL/TOOLS: modelling toolset

The primary aim ofWSSL is to spread the idea of representa-
tion completeness, creating specifications that can effectively
answer how a particular service affects the state of the world
under any possible circumstance. However, such a highly
expressive formal language requires significant modelling
effort on the part of service designers, as well as a high
level of expertise in service behavioural aspects, which, in
turn, may hinder the usability of WSSL/SDF. In order to
mitigate these effects, we propose to include a modelling
toolset, called WSSL/TOOLS, within the framework. We
have implemented a first prototype version6 which supports
the following features:

4 The aggregation algorithm is available in Appendix B.2.
5 If such knowledge is derived through an analysis on possible exe-
cution paths, then the algorithms in [30] are more suitable, since they
include an aggregation process that relies on execution path probabili-
ties.
6 The prototype version of WSSL/TOOLS is available in http://www.
csd.uoc.gr/~gmparg/wssl-sdf.

– Import from WSDL and OWL-S convert existing WSDL
or OWL-S documents to equivalent WSSL ones, based
on the grounding mechanism in [5].

– Export to XML, FLUX or WSDL WSSL/TOOLS can
export aWSSL specification as aWSSL/XML document
or as a FLUX program; it can also generate an equivalent
WSDL file.

– Validation support detect conflicting information in a
specification (e.g. preconditions that contradict each
other) and assist in resolving such conflicts.

Using this version, designers can reuse existing service
specifications, without being familiar with the WSSL syn-
tax. However, to use WSSL features that are not included
in languages such as WSDL and OWL-S, they still require
knowledge of WSSL ramifications, default theories for
WSSL qualifications and any other underlying fluent calcu-
lus notions. To avoid this and strengthen the capabilities of
the toolset, we propose the addition of the following features:

– Partially observable states guide the user in the definition
of incomplete or knowledge states, by assisting inwriting
constraints and state formulas that conform to WSSL.

– Completion support guide the user in completing a spec-
ification by adding any WSSL element, possibly with
support of specification libraries.

– Non-functional aspects assist in creating QoS profiles,
using suitable terms by importedOWL-Qmodels or SLA
specifications, and in their correctness evaluation (based
on Definition 5). Convert WSSL QoS profiles (e.g. for a
produced composite SBA) to SLA specifications.

– Export to BPMN and BPEL provide assistance in view-
ing, editing and executing WSSL plans as BPEL or
BPMN models.

With this expanded set of features, WSSL/TOOLS essen-
tially masks formal language specifics that service designers
are most likely unfamiliar with. Thus, it can potentially
increase the usability of WSSL/SDF, since by relying on
the aforementioned features, the required skills of a ser-
vice designer in order to use the framework only amount to
knowledge of basic service behavioural aspects (IOPEs and
non-functional properties) and basic knowledge of predicate
logic.

6 Evaluation

In this section, we evaluate WSSL/SDF by directly com-
paring it with the most prominent related efforts, specif-
ically [34] and [26]. The rationale behind this choice is
twofold: (1) these works are the ones simultaneously sat-
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Table 3 WSSL Specifications for select tasks of the motivating scenario

Service Inputs Outputs Qualifications

Get location username user_location GeolocError

Choose and book filtered_list booking BookingError

Get best route booking, user_location route RoutingError

Service Preconditions Postconditions Ramifications

Get location GeolocActive(username) Located(username) –

Choose and book Verified(filtered_list), ¬UpdRequest(username) Verified(booking) RouteRequest(booking)

Get best route RouteRequest(booking) Verified(route) ¬RouteRequest(booking)

Table 4 Optimality evaluation (motivating scenario)

Framework Func. NonFunc. Other Time (ms)

Mabrouk et al. [26] 5/7 5/8 3/4 322.93

Rosenberg et al. [34] 5/7 6/8 3/4 1480

WSSL/SDF 7/7 8/8 4/4 293.2

isfying the maximum amount of requirements, as analysed
in Sect. 2; (2) they are the only ones, to the best of our
knowledge, that rely on a unified representation language for
functional and non-functional aspects. Due to these reasons,
they canbe considered themost prominent and relevant to this
work, allowing us to perform a uniform and fair comparison.
All experiments were performed on a Windows® 8 system
with an Intel®Core™ i7-740QMprocessor at 1.73GHz,with
6 GB RAM. Calculated values are an average of 20 runs. We
assume that we are tasked to design an SBA for the scenario
stated in Sect. 1 and we want to investigate howWSSL/SDF
improves on state of the art in terms of satisfying all require-
ments (functional, non-functional and other) declared there.

We also assume that available services are organised in a
WSSL repository as defined in Sect. 5.1; a subset of the con-
tained specifications is shown in Table 3 (the complete table
is in Appendix A.1), expressed in a language-independent
form so that they can be adapted to VCL and EASY-L, the
languages used by Rosenberg et al. [34] and Mabrouk et
al. [26], respectively. For each task, the repository contains
10 candidate services. The results are shown in Table 4 and
are explained below. Since different experiment setups were
used in [34] and [26] and their implementations are not acces-
sible to rerun the experiments,we normalised reported results
according to benchmark comparisons of the CPUs used.7

In terms of functional requirements, [34] and [26] are
unable to recognise ramifications and cannot work with par-
tially observable initial states; this means that they cannot
link Choose and Book with Get Best Route through the

7 Appendix C contains a detailed account of the normalisation process
as well as additional performance experiments.

former’s ramification and they cannot know if Set Prefer-
ences is to be included in the plan, unless the truth value
of UpdRequest(username) is known beforehand. In terms of
non-functional requirements, aggregation formulas in [26]
do not recognise any unmeasurable attributes, while those
in [34] do not recognise operation semantics and exception
handling. Also, while all three approaches support alterna-
tive bindings and local QoS filtering, with [26] additionally
supporting results ranking, onlyWSSL/SDF can provide ver-
ification support, including identification of causes in case
of failure thanks to the qualification problem solution. For
instance, if the service implementing the Choose and Book
task fails to produce the expected results, the related cause
BookingError is produced and picked up when the verifica-
tion process in WSSL/SDF queries the current state after the
execution of the SBA.

In terms of execution time, achieving optimality in the rel-
atively simple case of the motivating scenario does not lead
to decreased performance, since results are roughly equiv-
alent to [26]. Note that [34] exhibits significantly higher
execution times (attributed to their costly feature resolution
phase), even if we take into account the pre-normalised value
(627ms, run on a powerful testbed with doubled CPU power
compared to ours). Combined with the fact that the provided
experiments in [34] show linear increases to execution time
for more complex setups, this indicates that their approach
will always achieve higher execution times. To that end, we
exclude [34] from the next experiment, a decision validated
by the results that follow.

The second experiment aims to evaluate the scalability
of WSSL/SDF in direct comparison to the results in [26] to
determine how performance is affected for problems more
complex than the motivating scenario. The experiment set-
tings were chosen based on the experiments in [26] and are
as follows: specification size was fixed to 5 IOPEs and non-
functional goals to 5 local and 5 global QoS constraints; for
each task there are 10 candidate implementations and com-
positions are sequences that range from 10 to 50 tasks. We
also assume the median case of one discovery run per 2 tasks
in the sequence (as opposed to the best and worst cases of all
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Fig. 3 Comparative scalability evaluation

tasks being equivalent or completely distinct, respectively).
The results are shown in Fig. 3. Total execution time is again
comparable to [26], slightly decreased by 8% on average,
scaling reasonably with the number of tasks. Since planning
and QoS selection times are roughly similar, the decrease is
attributedmostly to the functional discovery phase. This may
be due to the way matchmaking is implemented: in this par-
ticular setup, ECLi PSe Prolog queries seem to run slightly
faster than the tableaux-based ones employed by Mabrouk
et al. [26]. Based on the results of the evaluation, we can
conclude that WSSL/SDF can achieve optimality in service
design without compromising in terms of performance scal-
ability.

7 Conclusions and future work

This article aims at illustrating the benefits of employing
rich specifications taking into account representation prob-
lems, when describing and composing services during SBA
design. The proposed end-to-end design framework is an
example of how such specifications can help achieve a
combination of desired capabilities, including dynamicity,
QoS-awareness, non-determinism and partial observability.
WSSL andWSSL/SDF can have a substantial impact to SOA
stakeholders. Service providers can advertise their products
more effectively usingWSSL specifications, increasing their
trustworthiness; service consumers are then more likely to
achieve their goals. SBA designers can employ WSSL/SDF
to reduce service design effort, at the cost of an increased
effort in creating service specifications; WSSL/TOOLS
offers a means towards managing this cost. The conducted
evaluation shows that WSSL/SDF improves on state of the
art by accurately capturing all requirements of a complex
SBA design scenario.

Future research will follow several interesting directions.
Primarily, a user study on WSSL/SDF needs to be con-
ducted to evaluatemodelling effort and usability. Concerning
the capabilities of WSSL/SDF, we plan to implement the
additional features of WSSL/TOOLS outlined at the end
of Sect. 5.5 and also explore the following extensions: (1)
alignment and normalisation when different ontologies are
employed; (2) adaptation or mediation between different I/O
concepts in order to achieve data integration; (3) discovery
enhancement via ontology-based reasoning to discover rela-
tions between concepts; (4) support for n-ary constraints, as
well as soft conditions and constraints in order to address
over-constrained functional requirements.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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