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Abstract

Motivation: High-throughput chemical genomic screens produce informative datasets, providing valuable insights
into unknown gene function on a genome-wide level. However, there is currently no comprehensive analytic pack-
age publicly available. We developed ChemGAPP to bridge this gap. ChemGAPP integrates various steps in a
streamlined and user-friendly format, including rigorous quality control measures to curate screening data.

Results: ChemGAPP provides three sub-packages for different chemical-genomic screens: ChemGAPP Big for large-
scale screens; ChemGAPP Small for small-scale screens; and ChemGAPP GI for genetic interaction screens.
ChemGAPP Big, tested against the Escherichia coli KEIO collection, revealed reliable fitness scores which displayed
biologically relevant phenotypes. ChemGAPP Small demonstrated significant changes in phenotype in a small-scale
screen. ChemGAPP GI was benchmarked against three sets of genes with known epistasis types and successfully
reproduced each interaction type.

Availability and implementation: ChemGAPP is available at https://github.com/HannahMDoherty/ChemGAPP, as a
standalone Python package as well as Streamlit applications.

1 Introduction

The field of chemical genomics and high-throughput phenomic
profiling has revolutionized the ability to functionally annotate un-
known genes on a genome-wide level. With applications for drug
discovery, mechanism of action studies, and conditional essentiality
studies, chemical genomics is a rapidly growing field (Brochado and
Typas 2013; Klobucar and Brown 2018). Chemical genomic screens
systematically assess the effect of chemical or environmental pertur-
bations (stresses) on single-gene mutant libraries. The resulting phe-
notypes can range from colony size as a proxy of fitness, colour

uptake to quantify biofilm formation, and changes in colony top-
ology to assess biofilm morphology (Kritikos et al. 2017). Individual
observations can be studied in isolation, based on the observed
phenotype of a gene in a specific condition, thereby creating a func-
tional link between a stress and a defined genetic perturbation.
However, the true power of chemical genomic approaches lies with-
in the ability to calculate phenotypic profiles for each mutant based
on their phenotypes across conditions (Nichols et al. 2011). These
phenotypic profiles can be hierarchically clustered to reveal similar-
ities between mutant profiles to functionally cluster genes or stress
conditions. This linkage reconstitutes biological pathways and
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complexes and therefore can functionally cluster unknown genes to
known biology (Nichols et al. 2011). The power of chemical genom-
ic screens, and the plethora of valuable information they produce,

has led to many important biological discoveries and their popular-
ity in the field of systems microbiology (Tong et al. 2001; Schuldiner

et al. 2005; Gomez and Neyfakh 2006; Fajardo et al. 2008; Tamae
et al. 2008; Typas et al. 2010; Nichols et al. 2011; Koo et al. 2017;
Bobonis et al. 2022).

Despite the rise in chemical genomics studies, there are currently
no dedicated programs to analyse the type of data these screens pro-

duce. Currently, a variety of methods are being implemented for the
analysis of data and are being performed by in-house scripts or are

adaptations of packages used for similar techniques (Collins et al.
2006; Dixon et al. 2009; Nichols et al. 2011; French et al. 2016;
Shiver et al. 2016, 2021). A number of image analysis software are

available for converting phenotypes within plate images into numer-
ical values, such as gitter or Iris; however, these are unable to con-
vert these values into fitness scores (Wagih and Parts 2014; Kritikos

et al. 2017). Another software that has been frequently imple-
mented, which is able to produce fitness scores, is EMAP Toolbox

(https://sourceforge.net/projects/emap-toolbox/); however, this tool
is now deprecated (Collins et al. 2006; Collins, 2006; Nichols et al.
2011). Furthermore, EMAP was originally developed to handle gen-

etic interactions within yeast and henceforth does not offer a stand-
ard solution for handling data from assays under conditions. None

of these options are accessible for users with limited computational
expertise, as many require the knowledge of coding languages such
as R or MATLAB to implement (French et al. 2016; Shiver et al.

2016, 2021). Consequently, there is a clear gap that hinders
researchers from effectively using chemical genomics approaches.

This study, therefore, introduces an easy to use, new wrapper soft-
ware and Streamlit app called ChemGAPP (Chemical Genomics
Analysis and Phenotypic Profiling), which has been developed as a

comprehensive chemical genomics data analysis software.
Here, we provide evidence for ChemGAPP’s effectiveness to reli-

ably analyse chemical genomics data. By providing ChemGAPP it
will enable the wider scientific community to use chemical genomics
approaches to reveal significant, biologically relevant insights into

gene function, drug mechanisms of action, and antibiotic resistance
mechanisms.

2 Materials and methods

ChemGAPP comprises of three pipelines ChemGAPP Big,
ChemGAPP Small, and ChemGAPP GI, each specifically designed

for different types of chemical genomic screens (Fig. 1).

2.1 ChemGAPP Big pipeline
In order to validate the ChemGAPP Big pipeline, we used the chem-
ical genomic screen data from Nichols et al. (2011) that was reana-
lysed using Iris by Kritikos et al. (2017) and Nichols et al. (2011).
Here, Kritikos et al. (2017) measured colony integral opacity as the
colony size measure, since this represents 3D colony growth. The
Nichols et al. study was the first major chemical genomic screen
within bacteria and was performed in Escherichia coli. Nichols et al.
assessed the phenotypes of the KEIO collection, an in-frame single-
gene knockout mutant library in E.coli K-12, within over 300 condi-
tions (Baba et al. 2006; Nichols et al. 2011). The Nichols et al. study
successfully produced >10 000 phenotypes, categorized various bio-
logically relevant hits and suggested functions for genes with previ-
ously unknown function (Nichols et al. 2011).

2.1.1 ChemGAPP Big: conversion of Iris files

ChemGAPP Big processes all classical stages of data analysis within
large scale chemical genomic screens, whilst introducing new fea-
tures to improve upon this analysis. The first stage is to produce a
dataset from the experimental data. Initial quantification of screen-
ing plates is increasingly performed by the image analysis software
Iris (Kritikos et al. 2017). Iris’s popularity is due to its versatility in
phenotype measurements, analysing many phenotypes, including
size, integral opacity, circularity, colour, etc. (Kritikos et al. 2017).
Therefore, the Iris file format was chosen as the default input for
ChemGAPP. Despite this, there is no limit to the usage of other
image analysis software, as long as the data is compiled into the Iris
file format. The Iris files were compiled into a dataset comprising of
each condition replicate plate as the columns and colony size data as
the values. To initially improve the dataset, zero values where not
all replicates were also zero were removed, since these likely repre-
sent mis-pinned colonies.

2.1.2 ChemGAPP Big: plate normalization

ChemGAPP Big then removes noise from the experimental data and
scales data to become comparable via a two-step normalization
(Supplementary Fig. S1). It is vital to perform plate normalization
before the data can be scored due to the noise that arises during
large chemical screens. A major issue within chemical genomic
screens is the edge effect, which is targeted by the first stage of nor-
malization (Baryshnikova et al. 2010). Since mutants are densely
pinned on plates, the outermost colonies are left with more space.
This results in increased growth around the plate edges, due to
reduced nutrient competition (Baryshnikova et al. 2010). The aim of
the first step of normalization is therefore to reduce this intrinsic
noise. The second stage standardizes all plates such that regardless
of condition, the median colony sizes are comparable. This is im-
portant for the generation of mutant S-scores across different condi-
tions later in the pipeline.

Plate normalization was performed as in Collins et al. (2006),
with the addition of an initial check for edge effects to evaluate if
the first normalization step was required. A Wilcoxon rank sum test
was performed between the colony size distributions for the outer
two edges and the centre of the plate. If edge effects are present, the
distributions will differ, and the first stage of normalization will be
performed. In the second stage, all plates were scaled such that the
plate middle mean was equal to the median colony size of all
mutants within the dataset.

2.1.3 ChemGAPP Big: quality control analyses

Within ChemGAPP Big, we have implemented multiple quality con-
trol tests to find common errors which occur within chemical gen-
omic screens. Acquiring the physical raw data for these screens is
challenging as often thousands of plates need to be accurately proc-
essed. The most common errors which occur in the laboratory are
mislabelled plates, inverted images, and mutants being unequally
pinned between replicates or missed entirely. In addition, despite
Iris’s ability to robustly quantify most mutants, its detection algo-
rithm can fail and create artefacts. The user can choose which tests

Figure 1 Workflow of the ChemGAPP packages. ChemGAPP Big analyses large

scale chemical genomic screens. ChemGAPP Small analyses small scale chemical

genomic screens. ChemGAPP GI analyses small scale genetic interaction screens.

2 Doherty et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/4/btad171/7103304 by guest on 16 M
ay 2023

https://sourceforge.net/projects/emap-toolbox/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad171#supplementary-data


to implement, allowing users to employ the right tests for the issues
that have arisen within their datasets.

2.1.3.1 Quality control analyses: Z-score test. The first test, aimed
at distinguishing between the phenotype of no growth and artefacts
due to mis-pinned colonies or missed detection by Iris, is the Z-score
analysis. The Z-score value describes the distance of a test value
from the population mean in measures of standard deviation (std).
The distribution of the population is adjusted to a standard normal
distribution, with a mean of zero and a std of 1 (Driscoll et al.
2000). The Z-score test compares replicate colonies for each plate in
each condition and highlights outlier colonies (Z-score value >1 or
<�1) or missing values. ChemGAPP Big then calculates percentage
normality for each replicate plate, i.e. the percentage of colonies
within the plate which are not outliers or missing values.

2.1.3.2 Quality control analyses: Mann–Whitney test. The Mann–
Whitney test compares the distribution of colony sizes between rep-
licate plates. If two replicate plates are reproducible, they should fall
into the same distribution. This test is particularly useful for identifi-
cation of mislabelled plates since distributions of colonies will sig-
nificantly differ. Furthermore, the Mann–Whitney test can highlight
unequal pinning effects. For each replicate plate in the condition of
interest, the distribution of mutant colony sizes was compared to
each other replicate’s distribution and a Mann–Whitney P-value cal-
culated. The mean P-value for each replicate was calculated by aver-
aging the Mann–Whitney P-values for comparisons including the
replicate of interest.

2.1.3.3 Quality control analyses: condition level tests. Where all rep-
licate plates are non-reproducible, a condition can be deemed un-
suitable for use. This can occur, for example, when a condition
produces a coloured media which is difficult to distinguish from the
colonies. Here, Iris can struggle to differentiate the colonies from the
background media, leading to artefacts in detection (Kritikos et al.
2017). Therefore, it is important to consider if whole conditions
should be removed from the dataset. Here, two tests were imple-
mented, the first calculated the variance in the Mann–Whitney P-
values for each replicate plate. A large variance here suggests that
the entire condition may be detrimental, since it is likely all replicate
distributions differ from each other. Finally, a general variance ana-
lysis was employed. Here, the variance of each replicate colony in
the condition of interest was calculated. The mean of these variances
was then calculated to gain an average variance across all plates for
each condition. A high variance implies that most colony replicates
differ within their size, and thus the entire condition is non-
reproducible.

2.1.4 ChemGAPP Big: threshold selection and data removal

Curation of the dataset is a fine balance between removing detri-
mental data and remaining informative. Therefore, the thresholds at
which data are removed are left to the user. However, ChemGAPP
Big allows for an informed choice by outputting a visual representa-
tion of the quantity of data lost at different thresholds for the vari-
ous tests (Supplementary Fig. S2). For the Z-score and Mann–
Whitney tests, the percentage of plates lost within each condition at
certain thresholds was calculated. Whereas, for the condition level
analyses, the overall number of conditions that would be lost at dif-
ferent thresholds was calculated. For Z-score analysis data, thresh-
olds of 20%, 30%, 40%, 50%, 60%, 70%, and 80% for percentage
normality were tested. For the Mann–Whitney test and the condi-
tion level tests, thresholds were generated based on the obtained
range of test values. The chosen thresholds for the curated dataset
were 80%, 0.07585, and 0.0128, for normality, Mann–Whitney
plate analysis, and Mann–Whitney condition analysis. Data were
not removed based on the average variance test since little variance
within conditions was observed (Supplementary Fig. S2). Chosen
thresholds were inputted and a new dataset with the failing plates
and conditions removed was outputted and normalized.

2.1.5 ChemGAPP Big: fitness score calculation

In order to find meaning within the data, fitness scores must be pro-
duced. Within ChemGAPP Big, this is performed using the S-score
test. The S-score test, as described in Collins et al. (2006), is a modi-
fied T-test where the mean of a set of colony replicates, for the
desired mutant within a specific condition, are compared to the me-
dian size of that mutant across all conditions. This provides a statis-
tical score for fitness, with positive scores showing increased fitness
and negative scores showing decreased fitness. Comparing a mutant
to itself across all conditions as a simulated wildtype is more power-
ful than comparing to the true wildtype. This is because a mutant
may have generally increased or decreased fitness than the wildtype.
By comparing to itself, a true baseline for comparison is used.
Furthermore, since S-scores correlate to statistical significance, they
provide a robust and informative measurement of how strong a
phenotype is across various conditions.

Where S-scores were calculated as infinity, scores were converted
to missing values. The S-scores of each plate were then scaled such
that the interquartile range (IQR) of the scores was equal to 1.35.
This scales the datasets such that the values for significant hits are
for S-scores <�3 and >2. In general, the majority of S-scores within
a dataset will be close to zero. Therefore, significant hits are S-scores
that are classified as outliers. Outliers are commonly determined as
scores deviating from the first or third quartiles by 1.5 times the
IQR, which in this case is �2. Therefore, significant scores would be
classified as <�2 and >2. However, since loss of function mutants
are more common, a higher threshold of deviation was chosen to
represent significant negative S-scores. The final non-curated dataset
was visualized within Treeview3 (Keil et al. 2018). Data were hier-
archically clustered for rows and columns using uncentred Pearson
Correlation and average linkage.

2.1.6 ChemGAPP Big: benchmarking the curated dataset

Following dataset curation, it is vital to confirm which dataset has
the most accurate fitness scores. In order to measure the accuracy of
the datasets, the concept that genes within the same operon often
have a similar function was drawn upon. If genes are functionally
related, we would expect their knockout mutants to behave similarly
across the different tested conditions. Thus, they would have similar
phenotypic profiles, which is their set of S-scores across all condi-
tions (Nichols et al. 2011). Therefore, the non-curated and curated
datasets were compared to each other as well as to the Nichols et al.
(2011) KEIO dataset, which was analysed within EMAP Toolbox.
Genes from the same operon and genes from differing operons were
subjected to cosine similarity analysis. Phenotypic profiles that are
similar will have cosine similarity scores close to 1, those with no
similarity will have scores close to zero and negatively correlated
profiles will have scores close to �1. Confusion matrices were pro-
duced at different thresholds of cosine similarity scores, ranging
from �1 to 1, by increments of 0.1. Here, a true positive was a set
of genes from the same operon with a cosine similarity score greater
than the threshold; a true negative was a set of genes from different
operons with a cosine similarity score lower than the threshold; a
false positive was a set of genes from different operons with a cosine
similarity score greater than the threshold; and a false negative was
a set of genes from the same operon with a cosine similarity score
lower than the threshold. At each threshold, the sensitivity, specifi-
city, and false positive rate were calculated and plotted in a receiver
operating characteristic curve. The area under the curve (AUC) for
the datasets was then calculated and compared.

2.1.7 ChemGAPP Big: production of bootstrapped dataset

In order to evaluate the accuracy and robustness of the S-scores pro-
duced by ChemGAPP Big, a bootstrapped dataset was produced.
The KEIO original and curated normalized datasets were boot-
strapped 1000 times with replacement. Each of the 1000 datasets
was subjected to S-score analysis. The mean of the bootstrapped
S-scores for each mutant in each condition, were compared to the
true S-scores and the mean absolute error (MAE) calculated.

ChemGAPP: a tool for chemical genomics analysis and phenotypic profiling 3
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2.2 ChemGAPP Small pipeline
In large scale chemical genomics, by design, the screens are un-
biased, and the aim is to test mutant libraries against a manifold of
stresses. Since in most conditions mutants are unlikely to display a
phenotype, a normal distribution of colony sizes is achieved. In con-
trast in small scale studies a few or only one condition are screened,
and, in such analyses, a confined hypothesis is often being tested.
When testing a specific hypothesis, conditions are often specifically
chosen with the assumption that there will be an associated pheno-
type. Therefore, the conjecture about the normal distribution of fit-
ness effects across conditions may not hold. In these instances,
ChemGAPP Big is not fit for purpose.

Therefore, we developed ChemGAPP Small for the analysis of
targeted small-scale chemical genomics studies. In ChemGAPP Big
fitness values are computed based on a minimum of �10 conditions
with normally distributed colony sizes. In contrast, ChemGAPP
Small generates fitness ratios for mutants versus the wildtype on the
corresponding condition, in place of S-scores, without relying on
any assumption about fitness distributions across conditions. By
doing so, ChemGAPP Small allows users to robustly analyse smaller
datasets without any constraints on gene or condition number. The
small-scale Iris files were compiled and normalized as for
ChemGAPP Big; however, zero values were not converted to missing
values. Fitness ratios were computed for each plate, either by divid-
ing the mean mutant colony size by the mean wildtype colony size
for the bar plots and heatmap, or by dividing each individual colony
by the mean wildtype colony size for the swarm plots. Significance
for bar plots was measured by 95% confidence interval, whereas a
one-way Analysis of Variance (ANOVA) was used to determine sig-
nificant differences from the wildtype within the swarm plots.

2.3 ChemGAPP GI pipeline
The final package ChemGAPP GI (ChemGAPP Genetic
Interactions) can analyse genetic (epistatic) interaction screening
data. Genetic interaction studies aim to determine the type of epista-
sis between two genes. ChemGAPP GI analyses single or multiple
gene pairs on the same condition plate, producing separate plots for
each gene pair. Genetic interactions are defined as instances where
the observed fitness of a double knockout mutant is significantly dif-
ferent to the expected fitness ratio (Mani et al. 2008). This can be
further categorized into two types, positive (alleviating), and nega-
tive (synergistic). In positive epistasis, the double knockout is fitter
than anticipated and in negative epistasis, it shows decreased fitness
(Mani et al. 2008).

ChemGAPP GI assesses the fitness of two single knockout
mutants and a double knockout mutant, versus a wildtype, to calcu-
late the observed and expected fitness ratios. By doing so, the tool
provides a proxy for the strength of the genetic interactions and the
mode of epistasis between the two genes. Genetic interaction Iris
files were inputted into ChemGAPP GI and genetic interaction fit-
ness ratios calculated. For the single and double knockouts, fitness
ratios were calculated by dividing the colony size of the mutant by
the colony size of the WT for that replicate. The double knockout
expected fitness ratio was calculated by the formula:

Double expected ¼ ðDA colony sizeÞ=ðWT colony sizeÞ
�ðDB colony sizeÞ=ðWT colony sizeÞ

Significance was measured by 95% confidence interval error
bars and one-way ANOVAs between the double observed and dou-
ble expected fitness ratios.

3 Results

3.1 ChemGAPP Big identifies common errors within

chemical genomic screens
In order to tailor ChemGAPP Big to large-scale chemical genomic
screen data, we designed the quality control steps to target com-
mon errors that arise within the field. One frequent error in chem-
ical genomic screens is the introduction of plate effects due to

unequal pinning. To identify this, we conducted the Z-score test
and looked at plates with low percentage normality. Two replicate
plates C and D in the 20�C cold shock condition, had a reduced
normality percentage of 64.84% and 70.53%, respectively
(Fig. 2A). Figure 2A represents the colony sizes of the replicate
plates. Conversely to C and D, Plates A and B had high percentage
normality scores of 90.43% and 95.05%, respectively (Fig. 2A).
Unequal pinning can be observed within Plates C and D. Within D,
the colonies are consistently smaller in the upper segment of the
plate and consistently larger in the lower segment. However, in C,
it is the outer segments of the plate, excluding the corners, with
reduced colony sizes, and the inner segment with increased sizes.
Within Plates C and D, 17.9% and 15.69% of colonies were classi-
fied as larger than the mean replicate colony size, and 17.19% and
13.74% of colonies were smaller, respectively, reflecting what is
seen in Fig. 2A.

To further detect unequal pinning, as well as missed pinning or
undetected colonies, the Mann–Whitney test was performed.
These effects are evident in Fig. 2B, where we identified a condi-
tion, i.e. 2 mg/ml rifampicin, in which one replicate (C) differed in
its distribution of colony sizes. Replicate C had a mean Mann–
Whitney P-value of 0.0018 (Fig. 2B). The distribution of C shown
in Fig. 2B shows an increased number of larger and smaller colo-
nies than A or B. Furthermore, C had more missing colonies (21)
than A or B, which both had only 4 missing values (Supplementary
Fig. S3). This is likely due to colonies being missed by pinning or
by Iris detection, showing the ability of the tool to successfully pin-
point non-reproducible replicate plates, based on a variety of
defects.

Figure 2 ChemGAPP Big highlights plates with errors common to chemical genomic

screens. (A) Plate matrix depicting the colony sizes within replicate plates of the con-

dition 20C (cold shock 20�C) and the percentage normality determined by the

Z-score test. (B) Density of colony sizes for replicates A, B, and C for condition Rif2

(Rifampicin 2mg/ml), Plate 6, Batch1. Difference in the distribution of C versus A

and B is statistically significant by Mann–Whitney test. **0.001<P-value �0.01;

ns, non-significant.
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3.2 S-scores are reliable and accurate representations

of fitness
In order to evaluate if the S-scores produced by ChemGAPP Big
were accurate and robust representations of fitness, a bootstrapped
dataset was produced. The MAE for the non-curated dataset was
0.0622, therefore, on average the mean S-scores from the boot-
strapped data differed by only 0.0622 when compared to the corre-
sponding experimental S-score (Fig. 3A). The std for the S-scores
within the non-curated dataset was 1.257. The MAE constitutes just
4.94% of the error, making the MAE a negligible difference. For the
bootstrapped curated dataset, the MAE was 0.0657 and the std for
the original curated dataset was 1.256 (Fig. 3B). The MAE equals
just 5.23% of the std, again making the difference negligible, there-
fore demonstrating the robustness of the S-scores.

Both the non-curated and curated datasets produced robust and
reliable S-scores. However, following dataset curation, it is impera-
tive to benchmark the fitness scoring of the curated dataset against
the non-curated dataset. Furthermore, it is important to confirm
ChemGAPP Big is as effective as previous software. In order to do
this, a cosine similarity analysis of phenotypic profiles was per-
formed between genes from the same operon and those from differ-
ent operons. ChemGAPP Big was equally proficient at fitness score
assignment as E-MAP, which was employed within the Nichols
et al. study looking at the E.coli KEIO collection. This held true for
both the curated and non-curated datasets (Fig. 3C). The AUC for
the curated and non-curated datasets were 0.6738 and 0.6736, re-
spectively, versus an AUC of 0.6797 for Nichols et al. Since some
genes in the same operon may not have the same function or may
have directly opposite functions, this measure is not a perfect model.
Therefore, to further prove the effectiveness of ChemGAPP Big, it

was vital to explore if biologically relevant phenotypes were still dis-
played within the dataset.

3.3 ChemGAPP Big displays hits with biological

significance
The major aim of ChemGAPP Big is to produce datasets which are
able to accurately reveal biologically relevant phenotypes.
Therefore, it was crucial that when reanalysing the Nichols et al.,
dataset with ChemGAPP Big that the biologically significant hits
were retained. Within the Nichols et al. (2011), paper, they discov-
ered that mutants within the GCV system were susceptible to sulfo-
namides. The GCV system is one of two branches responsible for
the conversion of tetrahydrofolate (THF) to 5,10-methylene THF,
an essential process within the THF biosynthesis pathway. Nichols
et al. (2011) performed validation experiments and determined this
to be a true phenotype in the dataset. This phenotype was retained
within the ChemGAPP Big dataset, with significant S-scores between
�3 and �9 (Fig. 4A).

Another means of validating the accuracy of the S-scores is by
searching for known synthetic lethal pairs. For example, efflux
pumps are one of the major drug resistance mechanisms within bac-
teria. In E. coli, the major RND efflux pump system responsible for
exporting many classes of antibiotics, including tetracyclines and
chloramphenicol, is the AcrAB-TolC system (Elkins and Nikaido
2002; Chowdhury et al. 2019). Thus, we can assume that if this
pump is deleted, the cell will be sensitive to its substrates. Following
S-score analysis by ChemGAPP Big, we confirmed that DacrA,
DacrB, and DtolC were in fact sensitive to the systems substrates,
with significant negative S-scores between �3 and �18 for minocyc-
line, puromycin, chloramphenicol, and tetracycline (Fig. 4B).

The significant S-scores for both the GCV system and the
AcrAB-TolC system further provide evidence that ChemGAPP Big is
capable of producing accurate S-scores for successful hit acquisition.

3.4 ChemGAPP Small produces informative fitness

ratios
To validate ChemGAPP Small a screen was performed based on the
observation within the Nichols KEIO chemical genomics dataset
that DenvC showed decreased fitness in membrane perturbing
stresses (Nichols et al. 2011). Within the Nichols dataset, DenvC
within 0.5% SDS þ 0.5 mM EDTA had an S-score of �8.5, showing
a significant decrease in fitness. In the current study, DenvC was
grown on LB and LB þ 0.25% SDS þ 0.25 mM EDTA. Within both
conditions, a statistically significant decrease of DenvC fitness was
seen compared to the wildtype (Fig. 5). However, this decrease was
more severe in the SDS þ EDTA condition, with a fitness ratio of
0.28 compared to 0.77 on LB. This indicated a similar response to
that observed in the Nichols et al. chemical genomic screen.
Demonstration of this response by ChemGAPP Small, provides

Figure 3 ChemGAPP produces robust and accurate S-scores. (A and B) Joint scatter

and density plot depicting the difference between (A) the original non-curated

S-scores versus the mean bootstrapped S-scores for each mutant within each condi-

tion of the KEIO dataset. (B) The curated S-scores versus the mean bootstrapped

S-scores for each mutant within each condition of the KEIO curated dataset.

Density plots show distribution of hits with various S-scores. For ease of visualiza-

tion, outlier bootstrapped S-scores >125 were excluded, representing a negligible

0.000018% (A) and 0.000026% (B) of all values (see Supplementary Additional

File S2). Outlier curated S-scores >125 were also excluded, representing a negligible

percentage of all values (0.00056%). MAE, mean absolute error; % of std, percent-

age of the standard deviation for the original dataset that the MAE constitutes.

(C) Receiver operating characteristic curve with AUC values for the KEIO

ChemGAPP Big non-curated dataset (red line), the KEIO ChemGAPP Big curated

dataset (blue line), and the KEIO dataset from Nichols et al. (2011) (yellow line).

Figure 4 Clustered heatmaps displaying the S-scores for various single gene knockout

mutants in different conditions. (A) The GCV system in sulfonamide drugs (Sulfa),

from left to right: Sulfamonomethoxine 100mg/ml; Sulfamethoxazole 100mg/ml;

Sulfamethoxazole 200mg/ml; Sulfamethoxazole 300mg/ml; Sulfamonomethoxine

50mg/ml. (B) AcrAB-TolC system mutants in presence of AcrAB-TolC substrates. ns,

non-significant.
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evidence for its effectiveness at interpreting small-scale screen data
into informative fitness ratios.

3.5 ChemGAPP GI successfully reveals genetic

interaction types
To validate ChemGAPP GI, we reanalysed data from a previous
study evaluating the genetic interactions between the outer mem-
brane (OM) lipoprotein nlpI and peptidoglycan machineries
(Banzhaf et al. 2020). Banzhaf et al. (2020) showed that nlpI did not
genetically interact with the penicillin-binding protein 4 encoding
gene dacB. Here, the difference between the double expected fitness
ratio and the double observed ratio was 0.002. However, nlpI
showed a synergistic interaction with PBP1B gene mrcB, with a dif-
ference of 0.62 between the expected and observed ratios (Banzhaf
et al. 2020). ChemGAPP GI successfully reproduced these results
using the raw data from the Banzhaf et al. study, showing differen-
ces in the double expected and double observed ratios of 0.011 and
0.52 for dacB and mrcB, respectively (Fig. 6A and B). Further to
this, we validated a previously described positive genetic interaction
between the OM lipoprotein bamB and DNA replication activator

diaA. After analysis with ChemGAPP GI, evidence of a positive
genetic interaction was achieved (Fig. 6C). ChemGAPP GI, is conse-
quently capable of accurately predicting all types of genetic
interactions.

4 Discussion

ChemGAPP was designed to address the need for a chemical genomics
analysis software that is easy to use and fully suited to purpose. The
current lack of software has led to the implementation of in-house
scripts, often based on EMAP Toolbox (Shiver et al. 2016, 2021).
This gap in the field limits the analysis pipeline to bioinformaticians
and computational biologists, who are able to write and implement
these scripts. One recent study, however, produced an analysis pack-
age (ScreenGarden) for plate-based high-throughput screens to fill the
gap of deprecated analysis software (Klemm et al. 2022). However,
similar to EMAP Toolbox, this software was not specifically designed
for chemical genomic screen data and was tested on Synthetic Physical
Interaction (SPI) screen data (Klemm et al. 2022). Furthermore,
ScreenGarden produces log growth ratios and Z-scores which are
compared to one or two control plates as its fitness measure. For the
analysis of chemical genomic screen data, this is not as effective as
using S-scores, which consider the effect of gene mutation across all
conditions. Despite this, in instances where fitness ratios are more ap-
plicable, such as small-scale screens, ChemGAPP Small covers this re-
quirement. This makes ChemGAPP a more comprehensive tool and,
considering the nature and aim of chemical genomic screens, more
suitable for chemical genomic analysis.

5 Conclusions

We have introduced ChemGAPP a comprehensive, user-friendly wrap-
per software dedicated to the analysis of a variety of chemical genomic
screen types. ChemGAPP’s three sub-packages were specifically
designed to allow a wider scientific audience to engage in chemical
genomic techniques by streamlining each dedicated analysis pathway.
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