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Abstract

The cell envelope of Gram-negative bacteria is a formidable barrier that is difficult for antimicrobial drugs to penetrate.
Thus, the list of treatments effective against these organisms is small and with the rise of new resistance mechanisms is
shrinking rapidly. New therapies to treat Gram-negative bacterial infections are therefore sorely needed. This goal will be
greatly aided by a detailed mechanistic understanding of envelope assembly. Although excellent progress in the
identification of essential envelope biogenesis systems has been made in recent years, many aspects of the process remain
to be elucidated. We therefore developed a simple, quantitative, and high-throughput assay for mutants with envelope
biogenesis defects and used it to screen an ordered single-gene deletion library of Escherichia coli. The screen was robust
and correctly identified numerous mutants known to be involved in envelope assembly. Importantly, the screen also
implicated 102 genes of unknown function as encoding factors that likely impact envelope biogenesis. As a proof of
principle, one of these factors, ElyC (YcbC), was characterized further and shown to play a critical role in the metabolism of
the essential lipid carrier used for the biogenesis of cell wall and other bacterial surface polysaccharides. Further analysis
of the function of ElyC and other hits identified in our screen is likely to uncover a wealth of new information about the
biogenesis of the Gram-negative envelope and the vulnerabilities in the system suitable for drug targeting. Moreover, the
screening assay described here should be readily adaptable to other organisms to study the biogenesis of different
envelope architectures.
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Introduction

The cell envelope of bacteria serves as their interface with the

environment. This structure plays an essential role in maintaining

cellular integrity and provide protection from external insults. For

pathogens, the envelope is the site of first contact with the host and

where major pathogenicity determinants such as adhesins and

toxin secretion systems assemble [1–3]. Uniquely bacterial in

origin, cell envelope building blocks are also recognized by host

innate immune receptors as signs of invasion [4]. The cell

envelope is therefore both a strength and a weakness for

pathogenic organisms. Similarly, these structures simultaneously

present great challenges and opportunities for therapeutic

intervention. Many otherwise effective drugs have difficulty

penetrating bacterial envelopes to reach their cellular target [5].

On the other hand, molecules like penicillin and vancomycin that

disrupt envelope assembly processes have been some of our most

effective antibacterial treatments.

Although envelope composition varies throughout the bacterial

domain, the structures are typically complex and multi-layered

[6,7]. The two most well-studied classes of envelopes belong to the

Firmicutes and Proteobacteria and are traditionally referred to as being

either Gram-positive or Gram-negative, respectively, based on

how they normally react to the classic Gram-staining procedure.

Gram-positive (monoderm) envelopes are bi-layered structures

consisting of a single membrane surrounded by a thick cell wall

composed of peptidoglycan (PG) and teichoic acids [7]. The

envelopes of Gram-negative bacteria (diderm), on the other hand,

have three layers: an inner (cytoplasmic) membrane, an outer

membrane, and a thin layer of PG sandwiched between them [7].

Mycobacteria possess another distinct envelope class. In addition to a

cell membrane and PG layer, they contain a second polysaccha-

ride layer called the arabinogalactan, which is attached to waxy

hydrocarbons called mycolic acids that are thought to form the

equivalent of the Gram-negative outer membrane [8].

The outer membrane of Gram-negative proteobacteria provides

these organisms with a high intrinsic resistance to antibiotics [9].

Thus, therapeutic options for treating Gram-negative bacterial

infections are relatively limited. The problem has worsened

significantly in recent years with the emergence of carbapenem-

resistant Gram-negative Enterobacteriaceae like Klebsiella pneumoniae

and Escherichia coli [10]. It is therefore important that new

vulnerabilities in the Gram-negative envelope be identified to

serve as targets for antibacterial drugs, or for the development of
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inhibitors that disrupt the permeability barrier to sensitize resistant

organisms to approved therapeutics. Along these lines, tremendous

progress has been made in our understanding of Gram-negative

envelope assembly over the last two decades [11]. Most of the

essential envelope biogenesis systems have now been identified in

E. coli and related proteobacterial pathogens including: (i) the Sec

system that transports proteins across the inner membrane or

inserts them into it, (ii) the Lol system for lipoprotein transport to

the outer membrane, (iii) the Bam system for outer membrane

beta-barrel protein assembly, (iv) the Lpt system for lipopolysac-

charide (LPS) transport to and assembly in the outer membrane,

and (v) the penicillin-binding proteins (PBPs) and associated factors

that construct the PG layer [7]. What remains unclear is how these

different processes are controlled and coordinated with one

another so that the envelope grows uniformly and maintains its

integrity as it is remodeled. Given that genes coding for envelope

proteins constitute roughly one quarter of the E. coli genome, and

that over a third of these have an unknown or poorly understood

function [12], it is likely that many factors important for

modulating envelope assembly remain to be identified. Large-

scale genetic methods represent a promising avenue for discover-

ing these factors.

Genetic screens for envelope biogenesis mutants were per-

formed many years ago taking advantage of the release of

periplasmic RNase from defective cells, which was detected as a

zone of clearing on RNA-containing agar plates [13,14]. However,

these ‘‘periplasmic leaky’’ screens were performed in the pre-

genomic era and only identified a small handful of mutants, some

of which were never precisely mapped [15–18]. We therefore

thought that revisiting this genetic approach with our current

knowledge and technology would be fruitful for the identification

of new factors involved in the biogenesis of the Gram-negative

envelope. Rather than rely on the detection of RNase leakage,

which requires replica-plating and the use of RNA-containing soft

agar overlays [13,14], we decided to use an old reporter, b-

galactosidase (LacZ), in a new way. The b-galactosidase substrate

chlorophenyl red-b-D-galactopyranoside (CPRG) fails to penetrate

the E. coli envelope and cannot be processed by cytoplasmic LacZ

(Figure 1). Because mutants impaired for envelope biogenesis

typically either lyse at an elevated frequency to release LacZ into

the medium and/or are more permeable to small hydrophobic

molecules, we reasoned that they should be readily identifiable

based on CPRG hydrolysis and the formation of red colonies on

CPRG-containing agar. A preliminary screen of a transposon-

mutagenized wild-type E. coli strain proved this to indeed be the

case. We then proceeded to systematically screen an ordered E. coli

deletion library for mutants with a CPRG+ phenotype, implicating

numerous new factors in proper envelope assembly. As a proof of

principle, we further analyzed a mutant inactivated for ycbC, which

encodes a factor with a highly conserved domain of unknown

function (DUF218) [19]. Loss of YcbC function was found to cause

a severe growth defect at low temperature accompanied by an

elevated frequency of cell lysis resulting from impaired metabolism

of the essential lipid precursor required for PG biogenesis. We

have therefore renamed this factor ElyC (elevated frequency of

lysis) to reflect this phenotype. Further analysis of the function of

ElyC and other CPRG+ mutants is likely to uncover a wealth

of new information about the biogenesis of the Gram-negative

envelope and its control under different environmental conditions.

Importantly, the CPRG screen described here should also be

transferable to other organisms to study the biogenesis of different

envelope architectures and understand how one of the most

rapidly evolving features of the bacterial cell adapts to different

niches.

Results

A high-throughput screen for mutants defective in
envelope biogenesis

Our goal was to develop a simple screen for the identification of

new factors required for Gram-negative cell envelope biogenesis.

We thought that b-galactosidase (LacZ) would be a useful reporter

for envelope integrity because the classic protocol for measuring

LacZ activity with o-nitrophenyl-b-D-galactopyranoside (ONPG)

requires a membrane permeabilization step to allow substrate

entry in cells [20]. We therefore reasoned that in the absence of

membrane permeabilization, mutants impaired in envelope

biogenesis could be identified by their enhanced LacZ activity

over normal cells. The synthetic substrate CPRG was chosen over

ONPG for screen development because of its increased sensitivity

[21] and the red color of its cleavage product, CPR (chlorophenyl

red), which we assumed would be easier to detect on LB agar than

the yellow ONPG product. Although it is unclear which

membrane of the Gram-negative envelope is primarily responsible

for preventing CPRG from entering cells, the outer membrane is a

good candidate given the hydrophobic nature of the synthetic

substrate and the well-known effectiveness of this layer at blocking

uptake of other hydrophobic molecules. Thus, mutants capable of

processing CPRG may either be defective in the permeability

barrier of the outer membrane or possess a defect that results in an

elevated frequency of cell lysis promoting the release of LacZ into

the medium (Figure 1A).

As an initial test of the screen, we mutagenized wild-type E. coli

MG1655, which is Lac+, with the EzTn-Kan transposome

(Epicentre) and plated dilutions of the resulting mutant library

on LB agar supplemented with CPRG (20 mg/ml) and IPTG

(50 mM) to induce the lac operon. Following overnight incubation

at 30uC, mutant colonies ranging from pink to dark red with

intense halos were observed at a frequency of approximately 1–2%

(Figure 1B, and data not shown). These CPRG+ colonies were

purified on LB agar prepared with a range of NaCl concentrations

Author Summary

Bacteria are surrounded by complex structures called cell
envelopes that play an essential role in maintaining cellular
integrity. Organisms classified as Gram-negative have
especially complicated envelopes that consist of two
membranes with a tough cell wall exoskeleton sandwiched
between them. This envelope architecture is extremely
proficient at preventing drug molecules from entering the
cell. Gram-negative bacteria are therefore intrinsically
resistant to many antibiotics, limiting the therapeutic
options for treating infections caused by these organisms.
To reveal new weaknesses in the Gram-negative envelope
for drug targeting, we developed a quantitative, high-
throughput assay for mutants with envelope biogenesis
defects and used it to screen an ordered single-gene
deletion library of the model Gram-negative bacterium
Escherichia coli. Importantly, the screen implicated 102
genes of previously unknown function as encoding factors
that likely participate in envelope biogenesis. As a proof of
principle, one of these factors, ElyC (YcbC), was character-
ized further and shown to play a critical role in the
metabolism of the essential lipid carrier used for cell wall
synthesis. Further study of ElyC function and that of other
factors identified in our screen is likely to reveal novel ways
to disrupt the envelope assembly process for therapeutic
purposes.

Rapid Screen for Envelope Biogenesis Factors
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(0, 0.5, and 1%) to assess growth of the mutants under different

osmotic conditions. Cells from the resulting colonies were

visualized by phase contrast microscopy, and mutant strains

displaying an elevated frequency of lysis were given the

designation Ely. Figure 1D shows an example micrograph of an

isolate with a severe Ely phenotype relative to wild-type

(Figure 1C). Several mutants, including the example shown in

Figure 1D, displayed lysis and/or morphological phenotypes that

varied greatly in their magnitude depending on the NaCl

concentration of the medium or the growth temperature, thus

highlighting the utility of testing the different growth conditions

(data not shown).

Transposon insertion sites were mapped in approximately 100

CPRG+ strains, many of which displayed some level of cell lysis in

micrographs. A large fraction of the mutants harbored insertions

in genes known to encode envelope assembly factors, including: (i)

components of the Tol-Pal system [22,23], (ii) the Tat transport

system [24,25], (iii) PBP1b and its partner LpoB [26,27], and (iv)

EnvC [28–30]. Thus, the screen was identifying factors important

for envelope assembly as intended. One problem with the

transposon mutagenesis approach, however, was that insertions

in large genes or operons represented a large fraction of the CPRG+
isolates. For example, over 10% of the isolates had insertions in the

tol-pal locus (data not shown). This observation suggested that

screening an ordered mutant collection would likely result in a more

comprehensive identification of envelope defective mutants than

random mutagenesis and screening. We therefore set out to screen a

defined mutant library [31] that includes the E. coli knockout (Keio)

collection [32] as well as a collection of mutants with hypomorphic

alleles of essential genes and mutants lacking genes for small RNAs.

The parent strain background (BW25113) of the ordered

mutant library is LacZ2. We thus could not directly use the

ordered library for CPRG screening. To convert the library to

LacZ+ en masse, we constructed a mobile plasmid, pCB112,

encoding lacZ under control of the lactose promoter (Plac). Lawns

of a pCB112-containing donor strain were prepared, and the

defined mutant collection was then transferred onto the lawns in

384-pin format. After overnight incubation, spots corresponding to

the locations of pinned library cells were transferred to agar

supplemented with kanamycin (Kan) and chloramphenicol (Cam)

to select for exconjugants possessing both the defined mutation

(marked by a KanR cassette) and the lacZ plasmid (marked by a

Figure 1. A screen for mutants defective in cell envelope assembly. A. Shown is a schematic illustrating the logic of the screen. Wild-type
(WT) cells are unable to cleave CPRG because the enzyme (LacZ) is separated from its substrate (CPRG) by the intact cell envelope and thus remain
white. Mutants that lyse or have defects in envelope permeability are able to cleave CPRG and turn red. B. Picture of CPRG agar with colonies from an
E. coli transposon mutant library. Most colonies are ‘‘white’’, with occasional red (single arrow) or pink (double arrow) colonies identifying mutants
likely to have envelope defects. The particular ‘‘red’’ mutant shown also has a growth defect. The plate was incubated overnight at 30uC. Note that we
were unable to carry out the screen at 37uC due to excessive background color development on the CPRG agar. C–D. Micrographs show cells from a
colony of WT (MG1655) (C) or an Ely mutant (Ely7) (D) grown on LB agar prepared with 1% NaCl. The transposon in Ely7 was mapped to the nhaA
gene coding for a sodium-proton antiporter. The phenotype shown was observed on LB with 1% NaCl, but not on LB lacking added salt (data not
shown). Cells were imaged on 1.2% agarose pads with a Nikon 50i microscope with a 1006phase-contrast objective.
doi:10.1371/journal.pgen.1004056.g001

Rapid Screen for Envelope Biogenesis Factors
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CamR cassette). Doubly drug-resistant colonies were then trans-

ferred in 384-pin format to LB agar supplemented with IPTG and

CPRG to screen for envelope mutants. Based on our experience

with the transposon library screen, we decided to screen the ordered

mutant set at room temperature and 30uC on media with different

NaCl concentrations (0 and 1% NaCl for both temperatures) in

order to maximize the number of identified envelope biogenesis

factors and potentially identify factors required for adaptation to

different temperatures or osmotic conditions.

To identify potential envelope biogenesis mutants, plate images

from each growth condition were quantitatively analyzed for red

color development using a custom software application called Iris

that can quantify several different colony features including color

(Kritikos & Typas, unpublished data). The observed CPR color

development on the screening plates was found to be directly

proportional to incubation time (data not shown). However,

because the color diffuses, an early time-point was used for

quantification to avoid neighbors of CPRG+ colonies from being

scored as hits. An example of a screening plate and corresponding

quantification is shown in Figure 2A–B. These panels as well as the

CPRG score distributions for all 4 different conditions (Figure 2C

and S1) clearly show that the assay is specific (only a small

proportion of mutants score positively) and has a wide dynamic

range. Following quantification of all plates and setting the CPRG

score threshold at 103.7 units, 120–200 CPRG+ mutants were

identified in each condition (Table S1), with the majority (,75%)

being condition-specific (Figure 2D). For example, mutants with

defects in enterobacterial common antigen (ECA) biogenesis were

detected as CPRG+ on LB no NaCl, while mutants defective for

outer membrane biogenesis, the Tol-Pal machinery, and colanic

acid biosynthesis were scored as positive on LB with 1% NaCl. On

the other hand, LPS biosynthesis genes were CPRG+ at low

temperature. Surprisingly, mutants involved in homologous

recombination were also enriched in LB containing salt. The

reason for this is not clear at present. Functional enrichment

analysis of Gene Ontology (GO) and KEGG pathways indicated

that the terms envelope, membrane, cell-wall, peptidoglycan, and

cell surface structure-related were the most statistically significant

terms associated with hits from all four datasets (Table S2 and S3).

Although many factors involved in outer membrane biogenesis

were identified in the screen (Table S1 and S2), it remains unclear

whether they were identified due to the loss of the outer

membrane barrier function or because mutants defective for these

factors lyse at an elevated frequency. In any case, the screen was

clearly effective at identifying factors involved in many different

aspects of envelope biogenesis/assembly. Importantly, 102

CPRG+ mutants (,22% of all hits) were in genes coding for

proteins of unknown function (Table S4). For more than half of

these factors, no significant growth phenotype was observed when

the same library was subjected to over 300 different plating

conditions [31]. This suggests that the CPRG readout could be a

very sensitive and powerful assay to use in larger-scale phenotyp-

ing screens for discovering gene function and network architecture

in a guilt-by-association manner [31].

Loss of ElyC function results in cell lysis at low
temperature

One of the mutants with the most striking CPRG+ phenotype

was a deletion of the gene of unknown function ycbC. Its phenotype

was strongest at room temperature, and based on the elevated

frequency of lysis observed in cell populations from colonies (not

shown), we renamed the gene elyC. The elyC reading frame

encodes a protein with two predicted transmembrane domains

and a large domain of unknown function (DUF) designated as a

DUF218 domain in the Pfam database [19]. Topology predictions

indicate that the DUF218 domain of ElyC is likely to be

periplasmic (Figure 3A). Interestingly, DUF218 domains are

abundant and widely distributed in the bacterial domain [19],

but little is known about their biological activity. The CPRG

screen indicated a potentially prominent role for ElyC in envelope

assembly, so as a proof of principle we initiated a more detailed

analysis of its function as well as the function of its paralogues.

E. coli encodes four proteins annotated as possessing a DUF218

domain: ElyC, SanA, YgjQ, and YdcF [19]. All of these factors are

predicted to be integral membrane proteins with periplasmic

domains (Figure 3A) with the exception of YdcF, which is

predicted to be cytoplasmic. SanA was originally identified

because its overproduction suppressed the vancomycin sensitivity

of an uncharacterized E. coli mutant with an envelope permeability

defect [33]. The protein was also found to play a role in

vancomycin resistance of wild-type cells at high temperature (43uC
and above), and the inactivation of its orthologue SfiX in Salmonella

typhimurium was found to suppress the cell division defect induced

by HisHF overproduction (the HisC pleiotropic response) [33,34].

These observations suggested a potential yet undefined role for

SanA in envelope biogenesis [33,34]. The crystal structure of the

related YdcF protein was reported several years ago, revealing a

fold for the DUF218 domain resembling that of the adenine

nucleotide alpha hydrolase-like family [35]. It was also reported

that YdcF binds S-adenosyl-L-methionine, but the physiological

relevance of this observation is not clear [35].

To further investigate the effect of inactivating DUF218 factors,

deletion mutations from the Keio collection were transduced to a

wild-type (MG1655) strain background and their growth and

CPRG phenotypes were assessed. As expected from the screening

results, the only single mutation that resulted in a CPRG+
phenotype on indicator agar was DelyC (Figure 3B). It was also the

only single mutation that caused an observable growth phenotype.

Compared to wild-type, the DelyC mutant grew normally at 30, 37

and 42uC, but grew poorly and formed very small colonies on LB

agar plates incubated at room temperature (Figure 3B). The

growth defect at this temperature was most severe on LB agar

containing 1% NaCl, and became less pronounced at lower salt

concentrations (data not shown). Importantly, the growth and

CPRG+ phenotypes of the DelyC mutant were corrected by the

expression of elyC in trans (see below), indicating that they were

indeed the result of ElyC inactivation rather than an effect of the

deletion on the expression of nearby genes. None of the other

single mutants lacking a DUF218 factor displayed a growth or

morphological phenotype on LB agar prepared with 0, 0.5, or 1%

NaCl at any incubation temperature tested (room temperature, 30,

37, or 42uC) (data not shown). Moreover, a triple mutant (D3)

lacking sanA, ygjQ, and ydcF also grew indistinguishably from wild-

type under the conditions tested (Figure 3B). We also constructed a

quadruple mutant (D4) lacking all DUF218 factors. The mutant

was viable and displayed growth and CPRG phenotypes that were

equivalent to the single elyC deletion (Figure 3B). Thus,

inactivating additional DUF218 factors did not exacerbate the

DelyC growth defect. Moreover, overproduction of other DUF218

factors did not correct the growth phenotypes resulting from ElyC

inactivation, suggesting that the functions of the different proteins

do not overlap (see below). We conclude that DUF218 factors are

not required for viability and that, of the four such proteins

produced by E. coli, only ElyC appears to play a significant role in

envelope biogenesis as revealed by its low temperature growth and

CPRG+ phenotypes.

To investigate the consequence of ElyC inactivation further, we

monitored the growth and morphology of a DelyC mutant grown

Rapid Screen for Envelope Biogenesis Factors
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Figure 2. Using the CPRG assay in high-throughput. A. Picture of indicator agar (1% NaCl) with pin-transferred cells of the ordered library
converted to Lac+ by conjugation. Plate was incubated for 23 hrs at room temperature. B. Output of the image analysis software (Iris) for the plate
shown in (A). C. CPRG assay score distribution for the screen carried out at room temperature on agar prepared with 1% NaCl. Positions of genes of
interest and/or known importance for envelope integrity are indicated by the red lines. Genes with scores above the cut-off (103.7 units) were
designated as CPRG+ hits. D. Venn diagram comparing the hits identified in the different growth conditions.
doi:10.1371/journal.pgen.1004056.g002

Figure 3. Phenotypes of mutants inactivated for DUF218 factors. A. Schematic showing the predicted membrane topologies of ElyC and its
paralogues SanA and YgjQ. The fourth paralogue, YdcF, is predicted to be cytoplasmic and is not shown. Topology predictions were performed using
the TMHMM server (http://www.cbs.dtu.dk/services/TMHMM/). B. CPRG and growth phenotypes of deletion mutants lacking DUF218 factors. Cells of
the indicated deletion mutants in an MG1655 strain background were either patched onto CPRG indicator agar (20 mg/ml CPRG and 50 mM IPTG,
upper panels) or streaked onto LB agar prepared with 1% NaCl (lower panels). All plates were incubated at room temperature.
doi:10.1371/journal.pgen.1004056.g003

Rapid Screen for Envelope Biogenesis Factors
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in liquid LB medium (1% NaCl) at room temperature. Interest-

ingly, the mutant culture grew as rapidly as wild-type cells until it

reached late-exponential phase when culture density abruptly

stopped increasing and began a slow decline (Figure 4A).

Microscopic analysis revealed that up until the point of growth

divergence, the mutant cells had a morphology that was

indistinguishable from wild-type cells (data not shown). However,

visualization of DelyC cells harvested just after the decrease in

culture density was observed revealed that the cells lysed via

membrane blebs emanating from midcell or the cell quarter

positions (Figure 4B and C). This morphological phenotype bears

a striking resemblance to cells lysing following treatment with

penicillin and other b-lactams [36–38], suggesting a potential role

for ElyC in PG biogenesis.

ElyC is required for proper cell wall biogenesis
We reasoned that if ElyC is indeed important for PG assembly,

its inactivation may be synthetically lethal with deletion mutants

lacking PG synthases. Two important PG synthases produced by

E. coli are the bifunctional (Class A) PBPs, PBP1a and PBP1b,

encoded by the mrcA (ponA) and mrcB (ponB) genes, respectively

[39]. These factors possess both peptidoglycan glycosyltransferase

(PGT) activity to synthesize the glycan strands of PG and

transpeptidase (TP) activity to crosslink the glycan chains via their

attached peptide moieties [40]. Cells lacking either of these PBPs

are viable, but the simultaneous inactivation of both factors results

in rapid lysis and cell death [26,27,41,42]. We were able to

construct both DelyC DmrcA and DelyC DmrcB double mutants

and maintain them at 37uC. However, consistent with a role for

ElyC in PG biogenesis at lower temperatures, we found that DelyC

was synthetically lethal with PBP1b inactivation but not in

combination with DmrcA when the mutants were grown at room

temperature (Figure 5A, data not shown).

To directly measure PG synthesis in a mutant lacking ElyC, we

metabolically labeled cells with [3H]-meso-diaminopimelic acid

(mDAP), an amino acid that is unique to the stem peptide of PG.

The PG sacculus is one of the few cellular structures that remains

insoluble in a boiling detergent solution (4% SDS). Therefore, upon

[3H]-mDAP labeling, PG synthesis can be monitored by withdraw-

ing aliquots of culture at times following label addition, boiling them

in 4% SDS, and passing the solution through a 0.22 mm filter [43].

Radioactivity retained on the filter reflects the amount of [3H]-

mDAP incorporated into the PG layer. For the labeling experiments,

cultures of wild-type and ElyC2 cells were subcultured to an OD600

of 0.04 in LB 1% NaCl containing [3H]-mDAP and grown at room

temperature. Incorporation of the radiolabel into SDS-insoluble

material was then monitored over the time-course shown in

Figure 5B. Strikingly, PG synthesis in ElyC2 cells appeared to be

completely blocked relative to wild-type cells, with the first

observable signs of inhibition detected at 5.5 hours of growth at

room temperature. Culture growth in this experiment mirrored that

shown in Figure 4A such that the growth defect of the ElyC2 cells

was not apparent until approximately 8 hours post-inoculation, or

just over one doubling of the culture following the initial signs of a

PG synthesis defect. The observation that growth can continue

without PG synthesis for about one mass doubling is consistent with

prior results of Prats and de Pedro [44] demonstrating that E. coli

cells can grow normally with up to 50% less PG per cell.

Also consistent with a PG synthesis defect in the ElyC2 mutant,

when PG sacculi were purified from unlabeled room temperature

cultures of a DelyC strain harvested prior to observable cell lysis,

the PG pellet obtained following boiling in 4% SDS was much

smaller than the corresponding pellet from wild-type cells

(Figure 5C). Pellet size was restored in DelyC cells expressing elyC

in trans (Figure 5C). We conclude that ElyC2 cells have a severe

defect in PG biogenesis at low temperatures.

Figure 4. Loss of ElyC function results in lysis. A. Cells of MG1655 [WT] or CB152 [DelyC] were grown overnight in LB medium (1% NaCl) at 37uC,
diluted 1:100 and grown at 37uC to an OD600 of approximately 0.4. Cultures were then diluted to an OD600 of 0.04 in LB 1% NaCl and grown at room
temperature in a shaking water bath. Cell growth was monitored by following culture OD600. Time is hours after the final inoculation. B–C. At
approximately 8 hours post inoculation, cells from the indicated cultures were imaged on 1.2% agarose pads using a Nikon TE2000 microscope with
a 1006phase contrast objective. Bar equals 3 microns.
doi:10.1371/journal.pgen.1004056.g004
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Multicopy suppression of the PG biogenesis defect in
ElyC2 cells

The PG synthesis pathway takes place in three stages (Figure 6A)

[39]. Precursor biogenesis begins in the cytoplasm with the

conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-

N-acetylmuramic acid (UDP-MurNAc) by MurA and MurB. The

peptide moiety is then added to UDP-MurNAc by MurC, D, E,

and F, ultimately forming UDP-MurNAc-pentapeptide (UDP-

MurNAc-pep). In the second, membrane-associated phase, UDP-

MurNAc-pep is converted to the precursor lipid-IPG by MraY,

which transfers phospho-MurNAc-pep to the lipid carrier un-

decaprenol-phosphate (Und-P). Und-P is synthesized by the

enzyme UppS. Lipid-IIPG is formed by MurG via the addition

of GlcNAc to lipid-IPG from UDP-GlcNAc. This final precursor

contains the basic monomeric unit of PG, the disaccharide-

pentapeptide. Following its production, lipid-IIPG must be flipped

to expose the sugar units to the periplasmic space where it can

then be polymerized and crosslinked into PG by the PBPs. The

identity of the flippase remains controversial [45,46].

To determine what stage of PG biogenesis might be affected by

ElyC inactivation, we took a candidate approach to identify multi-

copy suppressors of the ElyC growth and lysis phenotypes. Clones

from a multi-copy plasmid ORF library [47] encoding untagged

enzymes in the PG synthesis pathway expressed from a ColE1

plasmid under control of the tac promoter were selected and

introduced into DelyC cells. The CPRG phenotype of the resulting

strains was then assessed (Figure 6B). As expected, a plasmid

harboring elyC suppressed the CPRG+ phenotype of a DelyC

mutant. This was not the case for plasmids encoding sanA, the

other DUF218 factors, or most of the enzymes involved in PG

precursor biogenesis (Figure 6B–C, data not shown). Strikingly,

however, overproduction of MurA, UppS, or PBP1b fully

suppressed the CPRG+ phenotype of ElyC2 cells and restored

their growth at room temperature to normal (Figure 6B–D).

Interestingly, each of the enzymes with suppression activity

functions at a major transition point in PG biogenesis. MurA

catalyzes the committed step for PG synthesis [48], UppS is

responsible for producing the lipid carrier Und-P, which is likely

limiting for the synthesis of lipid-linked precursors [49], and

PBP1b performs the final polymerization and crosslinking

reactions [40]. Thus, overproduction of these factors may

generally increase the flux through the pathway to alleviate the

ElyC2 defect. To determine the specificity of the observed

suppression, we monitored the ability of the plasmid set to correct

the CPRG+ phenotype of a mutant lacking the PG synthase

PBP1b (Figure 6B). The murA-containing plasmid retained

suppressing activity in this background as did the PBP1b-encoding

plasmid as expected. Interestingly, overproduction of PBP1a

suppressed the CPRG+ phenotype of PBP1b2 cells but not that

of the DelyC mutant (Figure 6B), suggesting that PBP activity is not

generally limiting in cells lacking ElyC. On the other hand, UppS

overproduction appeared to specifically suppress the loss of ElyC

function (Figure 6B–D). We therefore infer that the primary defect

in ElyC2 cells is likely to be at the level of lipid carrier metabolism.

Genetic interactions between ElyC and the
enterobacterial common antigen biogenesis pathway

Further support for a functional role for ElyC in lipid carrier

metabolism was uncovered using high-throughput genetic inter-

action analysis technology (GIANT-coli) [50]. An Hfr donor strain

harboring a DelyC::CamR allele was crossed with the Keio

collection en masse to search for deletion alleles that either suppress

the growth defect resulting from the loss of ElyC function at room

temperature or exacerbate the DelyC phenotype at higher

temperatures (30 and 37uC). Interestingly, the analysis identified

both positive and negative interactions between DelyC and

deletions of genes coding for enzymes involved in the biogenesis

of enterobacterial common antigen (ECA), a surface polysaccha-

ride produced by all enteric bacteria [51] (Table 1). The ECA

polysaccharide is assembled from repeating units of GlcNAc, N-

Figure 5. Mutants lacking ElyC have a PG synthesis defect. A.
Overnight cultures of TB28 [WT], TU122 [DmrcB], CB152 [DelyC], and
CB172 [DelyC DmrcB] were serially diluted following normalization for
culture OD600. Five microliters of each dilution was spotted onto LB
agar and plates were incubated for 3 days at room temperature. B.
Cultures of CB74 [lysA::Tn10] and CB330 [DelyC lysA::Tn10] were grown
as in Figure 4A in medium supplemented with [3H]-mDAP. PG synthesis
was monitored by the incorporation of radioactivity into SDS-insoluble
material. See text for details. C. Cultures (500 ml) of TB28 [WT], CB152
[DelyC], and CB152(attlCB118) [DelyC (Para::elyC)] were grown at room
temperature to an OD600 of 0.5 and cell wall pellets were prepared as
described in Methods and Materials. Shown is a picture of the pellets
following ultracentrifugation to sediment isolated sacculi. Similar
preparations from cultures grown at 37uC showed no observable
difference in pellet size (data not shown). Note that the initial pellet
following SDS treatment of cells is likely to include material in addition
to sacculi. Thus the magnitude of the reduction in pellet size is only a
rough measure of the PG synthesis defect in the DelyC strain.
doi:10.1371/journal.pgen.1004056.g005
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acetyl-D-mannosaminuronic acid (ManNAcA), and 4-acitamido-

4,6-dideoxy-D-galactose (Fuc4NAc). It is commonly found as

either a cyclic form in the periplasm or linked to phosphatidylgly-

cerol in the outer membrane, but it can also be found attached to

lipid A-core in some bacteria [51,52]. Despite its ubiquity in

enterobacteria, the exact function of ECA remains unclear.

However, the polymer has been implicated in acid and bile-salt

resistance and has been shown to be important for virulence

[53–55].

The steps required for the synthesis of the ECA precursor, lipid-

IIIECA, have been elucidated (Figure 7A) [56–58]. Like PG, its

production proceeds via the progressive addition of sugar units to

the lipid carrier Und-P. The genetic interaction analysis indicated

that blocking lipid-IECA synthesis or its utilization suppressed the

growth defect of DelyC cells grown at room temperature (Table 1).

To confirm this observation, we transduced the DwecA::KanR,

DwecB::KanR, and DwecG::KanR alleles from the Keio collection

into a DelyC strain (MG1655 DelyC::frt) and assessed the

phenotypes of the resulting transductants. Strikingly, all three

Dwec alleles fully suppressed the CPRG+ phenotype and growth

defect of ElyC2 cells on solid medium, and the DwecA::KanR allele

was shown to completely rescue the growth defect of DelyC cells in

liquid medium at room temperature (Figure 7B–C). As opposed to

the positive effects of blocks early in the ECA pathway, the genetic

interaction analysis suggested that defects in lipid-IIECA utilization

adversely impact the growth of DelyC mutants. We tested this

observation by transducing the DrmlAECA::KanR and DwecF::KanR

alleles from the Keio collection into an ElyC depletion strain

CB152(attlCB118) [DelyC (Para::elyC)]. The resulting transductants

failed to grow at room temperature in the absence of elyC

Figure 6. Suppression of the ElyC2 phenotypes. A. Diagram of the PG synthesis pathway. See text for details. M, MurNAc; G, GlcNAc. Colored
circles represent amino acids in the PG stem peptide. B. Cells of EM1 [DelyC] and CB3 [DmrcB] containing multicopy plasmids with the indicated genes
were patched onto CPRG indicator agar and grown as described for Figure 3B. Plasmids were selected from an ordered ORF library set [47]. C. A
subset of the strains from B was grown on LB (1% NaCl) agar at room temperature and plates were photographed. D. The indicated subset of these
strains was also grown in liquid and monitored as described for Figure 4A except that the medium was supplemented with 100 mM IPTG. In B–D, the
WT strain did not contain any plasmid. Antibiotics were not included in the plates or in the liquid medium to select for the plasmid.
doi:10.1371/journal.pgen.1004056.g006
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induction with arabinose (Figure 7D), indicating that the

simultaneous inactivation of RmlAECA or WecF and ElyC is

lethal under these conditions. Interestingly, depletion of ElyC in

the DrmlAECA or DwecF backgrounds also resulted in a plating

defect at 37uC (Figure 7D), suggesting that ElyC function is not

limited to low temperatures. The negative interaction between

DelyC and DrmlAECA or DwecF suggests that the accumulation of the

intermediate precursor lipid-IIECA is toxic when ElyC is inacti-

vated. Accordingly, inactivation of WecA suppressed the observed

synthetic lethal phenotype displayed by ElyC2 RmlAECA2 and

ElyC2 WecF2 cells (Figure 7D).

The genetic interactions between elyC and the ECA biosynthesis

genes are consistent with the observed suppression of the ElyC2

phenotype by the overproduction of the Und-P synthase UppS.

Taken together, these findings suggest that in the absence of ElyC,

the PG biogenesis pathway is hypersensitive to competition for the

lipid carrier from ECA synthesis and potentially the synthesis of

other surface polysaccharides that utilize Und-P. In this context, it

is the basal level of competition for Und-P due to ECA synthesis

that likely results in the baseline growth defect of ElyC2 cells. We

suspect that this competition is intensified when flux through the

ECA pathway is blocked at the stage of lipid-IIECA utilization,

resulting in the observed synthetic lethal phenotypes due to the

build-up of this precursor and the further depletion of the free

Und-P pool. Mutations that lead to a defect in lipid-IECA

utilization are likely to be suppressive rather than negative because

the WecA reaction is readily reversible. Overall, our genetic

analysis of ElyC function is consistent with a model in which it

plays an important role in Und-P metabolism, possibly by

promoting the efficient utilization of Und-P or Und-P-linked

precursors by the PG biogenesis pathway. The example of ElyC

thus clearly demonstrates the utility of the high-throughput CPRG

screening method in uncovering new factors involved in important

aspects of envelope biogenesis.

Discussion

The cell envelope of Gram-negative bacteria is a formidable

barrier that is difficult for antimicrobial drugs to penetrate. Thus,

the list of treatments effective against these organisms is small and

shrinking rapidly with the rise of new resistance mechanisms,

especially those possessed by carbapenem-resistant Enterobacteriaceae

[59]. To address this problem, input from all levels of the scientific

endeavor is required, from the most fundamental to the applied.

Key to success in combating resistance will be a detailed

mechanistic understanding of the cell envelope assembly process.

Great strides have been made towards this goal, particularly in

recent years with the identification of the essential machineries

required for outer membrane biogenesis [7]. However, many

aspects of Gram-negative envelope assembly remain poorly

characterized, including the regulatory strategies used to coordi-

nate the construction of the different envelope layers. To shed light

on these and other aspects of envelope assembly, we developed the

high-throughput screening platform described in this report. A

number of factors with previously described roles in envelope

assembly were positively identified in our screen, indicating that it

works as intended. Moreover, the screen also implicated many

genes of currently unknown function as being important for

envelope integrity. Further study of these factors is likely to reveal

new mechanisms underlying the envelope assembly process, any

one of which could serve as a drug target to either block cell

growth or render the envelope permeable to approved drugs

currently ineffective against Gram-negative organisms.

Our discovery and characterization of ElyC as a new envelope

biogenesis factor validates the utility of the CPRG screening

approach. ElyC belongs to a broadly conserved family of proteins

with the DUF218 domain. Even though a wide range of bacteria

encode factors with DUF218 domains [19], the function(s) of these

proteins have remained largely mysterious. At higher tempera-

tures, mutants lacking ElyC grow normally. However, when

grown at room temperature, ElyC inactivation results in a striking

lysis phenotype. Our genetic and physiological studies indicate that

cell lysis at low temperatures is due to a severe defect in PG

synthesis. Because this phenotype can be overcome by the

overproduction of the lipid carrier synthase UppS, we infer that

mutants lacking ElyC are impaired in the lipid stages of the

pathway. Consistent with this observation, mutations that disrupt

the synthesis of the ECA polysaccharide and lead to the

accumulation of lipid intermediates in its synthesis were found to

be synthetically lethal with an ElyC defect. This phenotype was

caused by the accumulation of ECA lipid intermediates and not

the loss of ECA production because inactivating the first enzyme

in the pathway, WecA, suppressed the synthetic lethality.

Surprisingly, we found that a WecA defect also suppressed the

baseline CPRG+ phenotype and growth defect of a mutant lacking

ElyC alone. This observation suggests that the phenotypes

displayed by a DelyC mutant are likely to be the result of

competition between the PG and ECA synthetic pathways for the

lipid carrier Und-P. Competition is likely heightened when the

ECA pathway is impaired and its lipid intermediates accumulate

[55], thus causing a greater drain on the Und-P pool and the

observed synthetic lethal phenotypes.

The connection between ElyC and ECA synthesis provides a

likely explanation for the temperature-dependent nature of the

phenotypes displayed by a DelyC mutant. In the related bacterium

Yersinia enterocolitica, it was recently shown that ECA production is

higher at 22uC relative to 37uC, and that this correlates with an

increase in the expression of the ECA biosynthetic cluster at low

temperature [60]. Thus, we suspect that increased ECA synthesis

at low temperatures is likely to place additional demands on the

lipid carrier pool that reveals the defect in Und-P metabolism

resulting from the loss of ElyC function. ECA biogenesis may also

increase as cells enter late-exponential phase at room temperature,

thus providing a potential explanation for why DelyC cells grow

Table 1. Genetic interactions between elyC and
enterobacterial common antigen biosynthesis genes revealed
by high-throughput GIANT coli analysis.

Suppressive interactions at room temperature

Gene Name Growth Scorea

wecG 1.93

wecC 1.65

wecA 1.40

Negative interactions at 306C

Gene Name Growth Scorea

wecE 0.17

wecF 0.24

rmlAECA 0.27

aGrowth score reflects the colony size of the double mutant clone in question
divided by the average colony size of library clones. Scores greater than one
indicate suppressive interactions and those less than one indicate negative
interactions.
doi:10.1371/journal.pgen.1004056.t001
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normally until this stage of growth. Interestingly, the observed

negative genetic interaction between DelyC and either DrmlAECA or

DwecF at 37uC suggests that ElyC function is not restricted to low

temperatures, but rather its function just becomes more important

as the temperature drops.

Although the technical challenges of working with low

abundance phospholipids has thus far prevented us from

pinpointing the exact function of ElyC, our genetic analysis

suggests a potential role for ElyC in lipid-IIPG metabolism.

Overproduction of MurA and UppS are both likely to suppress the

ElyC defect by enhancing lipid-IIPG synthesis. The former likely

does so by increasing the flux through the PG synthesis pathway

and the latter by increasing the pool size of Und-P available for the

lipid-precursor generating enzymes. We therefore infer that cells

defective for ElyC may either have reduced lipid-IIPG levels and/

or may not efficiently utilize the lipid-IIPG that is produced.

According to this view, overproduction of PBP1b is probably able

to suppress the ElyC2 defect by providing more synthases to

overcome a potentially lower effective lipid-IIPG concentration. If

this interpretation is correct, the PG synthesis defect of ElyC2 cells

may be most apparent when the synthesis of other polysaccharides

is induced because ElyC functions to preferentially ‘‘funnel’’ lipid

carrier or precursors through the PG pathway. One attractive

possibility is that ElyC is part of a mechanism that enhances the

affinity of MraY for Und-P so that PG synthesis is the dominant

pathway for lipid carrier utilization. Alternatively, ElyC may help

the PBPs properly select lipid-IIPG over the many other lipid-linked

precursors likely to be present in the cell membrane at times when

other extracellular polysaccharides are being produced at high

levels. Other functions for ElyC in lipid carrier metabolism are also

consistent with the data, including a role in Und-P production or its

recycling, and indirect effects are difficult to exclude at this stage.

Nevertheless, given the central location of Und-P in the synthetic

pathways of all manner of extracellular polysaccharides, any of the

aforementioned roles for ElyC has important implications for our

understanding of envelope biogenesis. Further study of its function

Figure 7. Genetic interaction between ElyC and the ECA biogenesis pathway. A. Diagram of the ECA precursor synthesis pathway. G,
GlcNAc; Mu, ManNAcA; Gt, Fuc4NAc; P-Gc, glucose-1-phosphate. B. Cells of MG1655 [WT], EM9 [DelyC], CB329 [DelyC DwecA], CB337 [DelyC DwecB],
and CB265 [DelyC DwecG] were patched onto CPRG indicator agar and grown as described for Figure 3B. C. The indicated subset of these strains was
also grown in liquid LB 1% NaCl at room temperature and monitored as described for Figure 4A. Cultures of DelyC DwecB and DelyC DwecG strains
grew as well as the DelyC DwecA strain (data not shown). D. Overnight cultures of TB28 [WT] or CB152(attlCB118) [DelyC (Para::elyC)] and its DrlmAECA,
DwecF, DwecA DrlmAECA, and DwecA DwecF derivatives were grown in LB supplemented with 0.2% arabinose and serially diluted following
normalization for culture OD600. Five microliters of each dilution was spotted onto LB 1% NaCl agar supplemented with 0.2% arabinose or glucose as
indicated and plates were incubated at the indicated temperature.
doi:10.1371/journal.pgen.1004056.g007
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and that of other factors identified in our screen is therefore likely to

reveal new and interesting ways to disrupt the envelope assembly

process for therapeutic purposes.

An exciting aspect of the CPRG assay is the potential for

expanding its use in larger scale chemical genomics analyses.

Using only four conditions in the current study, we were able to

identify phenotypes for ,80 mutants of genes of unknown

function that were previously unresponsive when using colony

size alone as a proxy of fitness in .300 conditions [31]. Although

there are aspects of the assay that still need to be optimized before

it can be expanded to a large number of growth conditions (color

diffusion and timing of color development), its use as a highly

sensitive readout for chemical genomics studies holds great

promise for uncovering gene function and pathway organization

based on the similarity of the response profiles for different

mutants. Furthermore, because of its simplicity and use of the

widely employed LacZ reporter, the CPRG assay described here

should be readily adaptable to other organisms and enable similar

high-throughput screens to discover envelope biogenesis factors in

bacteria with distinct surface architectures.

Materials and Methods

Media, bacterial strains, and plasmids
Cells were grown in LB [1% tryptone, 0.5% yeast extract, and

0.5% NaCl], unless the salt concentration is specified otherwise (0

or 1% NaCl). Antibiotics were used at 10 (chloramphenicol; Cm),

15 (ampicillin; Amp) or 20 (kanamycin; Kan) mg/ml. Bacterial

strains used are listed in Table S5. All E. coli strains used in the

reported experiments are derivatives of MG1655. Plasmids used in

this study are listed in Table S6. Plasmids from the multicopy

ORF library [47] used throughout this study encode untagged

proteins expressed from a ColE1-derived vector under control of

the tac promoter. See Text S1 for plasmid construction details.

Screening of transposon library for envelope defective
mutants

Wild-type MG1655 cells were mutagenized with the EzTn-Kan

transposome from Epicentre as described previously [28]. Cells

from the resulting library were plated on LB (0.5% NaCl) agar

supplemented with CPRG (20 mg/ml) and IPTG (50 mM) to

achieve a density of about 100 colonies per plate. After

approximately 15–28 hours of growth at 30uC, colonies displaying

a red or strong pink CPRG+ phenotype were purified on LB agar

prepared with 0, 0.5, and 1% salt and grown at 30uC and 42uC
overnight. Cells from colonies of mutants grown under each

condition were visualized by phase contrast microscopy. The

location of the transposon insertions in about 100 CPRG+
mutants was determined using arbitrarily primed PCR and DNA

sequencing as described previously [28].

Screening of the ordered library for CPRG+ mutants
A copy of the previously described ordered E. coli mutant library

[31] stored in 96-well format at 280uC was thawed, pinned onto

LB-Kan agar plates, and grown overnight at 37uC. The following

day the library was condensed to 384-pin format on LB-Kan agar

plates using a Singer Rotor robot. After growth overnight, the

library was transferred to LB agar plates spread with 100 ml of an

overnight culture of JA200/pCB112 [donor strain/Plac::lacZ,

CamR]. The resulting mating plates were incubated overnight at

37uC, positions corresponding to the ordered library were

transferred to LB-Kan-Cam plates, and the plates were incubated

again at 37uC overnight. Finally, the Lac+ exconjugants of the

ordered library were transferred to LB agar supplemented with

CPRG (20 mg/ml), IPTG (100 mM), and various NaCl concen-

trations (0, and 1%), and incubated either at room temperature or

at 30uC. Plates were monitored through time and were imaged

both at the end of vegetative growth (,12 or 23 hours for the

30uC or room temperature grown cells, respectively), and after

their growth plateaued, 7 hours later. Images were analyzed using

in-house software (Iris) that segments the image and measures the

hue of each pixel in the HSV color space. The score for each

mutant is an average of the scores of the 2 clones present in the

library for each mutant. CPRG scores for the early time-points

were used for the subsequent analysis. Thresholds were set as

described in the text and were manually evaluated to minimize

false negatives and false positives.

Assessment of phenotypes and multicopy suppression
analysis

To monitor the growth of DelyC cells in liquid medium,

overnight cultures of TB28 [WT] and CB152 [DelyC] strains were

grown in LB at 37uC. These cultures were diluted 1:100 in LB 1%

NaCl and grown at 37uC to an OD600 of approximately 0.4.

Cultures were then diluted to an OD600 of 0.04 in LB and grown

at room temperature in a shaking water bath. Measurements of

the culture OD600 were then taken every 30–60 minutes.

For viability measurements, overnight cultures were adjusted to

an OD600 of 2, serial dilutions from 1021 to 1026 were prepared in

LB, and 5 mL of each dilution were spotted onto solid medium.

Plates were incubated overnight at 37uC or 3 days at room

temperature and photographed. To assess the CPRG phenotypes

of various strains, single colonies from a freshly streaked LB agar

plate were patched in the shape of an X onto LB medium

containing 20 mg/ml of CPRG and 50 mM of IPTG. Plates were

incubated overnight at room temperature and photographed. For

strains containing multicopy plasmids, the CPRG phenotypes

were assessed identically except that the concentration of IPTG

was increased to 100 mM.

Measurement of PG biogenesis and sacculi preparation
Overnight cultures of CB74 [lysA::Tn10] and CB330 [DelyC

lysA::Tn10] were grown in LB medium supplemented with

100 mg/ml lysine. A lysA::Tn10 strain background was used to

prevent the incorporation of added mDAP into proteins. The

overnight cultures were diluted 1:100 and grown in LB to an

OD600 of about 0.4 as above. The cultures were then diluted to an

OD600 of 0.04 into LB 1% NaCl supplemented with lysine,

methionine and threonine at 100 mg/ml and [3H]-mDAP

(American Radiolabeled Chemicals) at 10 mCi/ml. Cultures were

grown at room temperature in a shaking water bath and at the

time points indicated in Figure 5B, 0.2 ml of culture was

withdrawn and added to 0.8 ml of hot (95uC) 5% SDS solution.

Samples were incubated at 95uC for an additional 30 minutes,

cooled to room temperature, and SDS-insoluble PG material was

recovered by filtration essentially as described [61]. Filters were

dried and radioactivity detected by scintillation counting using a

Microbeta Trilux 1450 LSC from Perkin-Elmer and Ecolite (MP

biomedicals) scintillation fluid.

Sacculi pellets were prepared for TB28 [WT], CB152 [DelyC],

and CB152(attlCB118) [DelyC (Para::elyC)]. Overnight cultures

were diluted and grown to exponential phase as described above.

They were then diluted into 500 ml of LB 1% NaCl and grown at

37uC or room temperature to an OD600 of 0.5. Cultures of

CB152(attlCB118) additionally contained 0.2% arabinose. Cells

were harvested by centrifugation at 40006g for 10 minutes at 4uC
and the pellet was resuspended in 10 ml of ice-cold phosphate

buffered saline. The cell suspension was added drop-wise to 40 ml of
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boiling SDS 5% solution. The mixtures were boiled for 30 minutes

with stirring, and left to cool at room temperature overnight. Sacculi

were sedimented by ultracentrifugation at 100,000 g for 1 h at 25uC
and the resulting cell pellets were photographed.

High-throughput genetic interaction analysis
The ordered library described above was further condensed to

1536-pin format and transferred to plates spread with 50 ml of a

culture of CB157 [Hfr donor, DelyC::cat] at an OD600 of 1. The

mating plates were incubated overnight and after an intermediate

selection against the donor parent, double mutants were selected

in LB plates containing both antibiotics [50]. Interactions were

scored by directly comparing the growth of the double mutants to

that of the KEIO single mutants (Table 1).

Supporting Information

Figure S1 Score distributions for the CPRG analysis. A–C.

CPRG score distributions for the screen carried out under the

indicated conditions. Positions of genes of interest and/or known

importance for envelope integrity are indicated. Genes with scores

above the cut-off (103.7 units) were designated as CPRG+ hits.

(TIF)

Table S1 Scores from CPRG analysis of the mutant collection.

Five tabs in the spreadsheet are included. 30 LB0, 30 LB1, RT

LB0, RT LB1, and gene names for mutants above threshold. The

first four tabs provide average CPRG scores from the analysis at

30uC LB no salt, 30uC LB 1% NaCl, room temperature LB no

salt, and room temperature LB 1% salt. The final tab lists gene

names for those mutants scoring above the threshold of 103.7

arbitrary units.

(XLSX)

Table S2 Gene Ontology (GO) enrichment. The spreadsheet lists

terms and p-values for their relative enrichments among the hits

identified in the CPRG screen.

(XLSX)

Table S3 KEGG pathway enrichment. The spreadsheet lists

pathways and p-values for their relative enrichments among the

hits identified in the CPRG screen.

(XLSX)

Table S4 Orphan hits identified in the CPRG screen. The file

lists the gene names of all genes of unknown function (orphans)

identified as possible envelope assembly factors in the CPRG

screen.

(XLSX)

Table S5 Lists strains used in this study.

(DOC)

Table S6 Lists plasmids used in this study.

(DOC)

Text S1 Supplemental methods and materials. Details for

plasmid constructions and other supplementary protocols are
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(DOC)
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