56 research outputs found

    Computer simulation of the critical behavior of 3D disordered Ising model

    Full text link
    The critical behavior of the disordered ferromagnetic Ising model is studied numerically by the Monte Carlo method in a wide range of variation of concentration of nonmagnetic impurity atoms. The temperature dependences of correlation length and magnetic susceptibility are determined for samples with various spin concentrations and various linear sizes. The finite-size scaling technique is used for obtaining scaling functions for these quantities, which exhibit a universal behavior in the critical region; the critical temperatures and static critical exponents are also determined using scaling corrections. On the basis of variation of the scaling functions and values of critical exponents upon a change in the concentration, the conclusion is drawn concerning the existence of two universal classes of the critical behavior of the diluted Ising model with different characteristics for weakly and strongly disordered systems.Comment: 14 RevTeX pages, 6 figure

    Studies of the Response of the Prototype CMS Hadron Calorimeter, Including Magnetic Field Effects, to Pion, Electron, and Muon Beams

    Get PDF
    We report on the response of a prototype CMS hadron calorimeter module to charged particle beams of pions, muons, and electrons with momenta up to 375 GeV/c. The data were taken at the H2 and H4 beamlines at CERN in 1995 and 1996. The prototype sampling calorimeter used copper absorber plates and scintillator tiles with wavelength shifting fibers for readout. The effects of a magnetic field of up to 3 Tesla on the response of the calorimeter to muons, electrons, and pions are presented, and the effects of an upstream lead tungstate crystal electromagnetic calorimeter on the linearity and energy resolution of the combined calorimetric system to hadrons are evaluated. The results are compared with Monte Carlo simulations and are used to optimize the choice of total absorber depth, sampling frequency, and longitudinal readout segmentation.Comment: 89 pages, 41 figures, to be published in NIM, corresponding author: P de Barbaro, [email protected]

    Hadroproduction of χc states in 530 GeV/c π− interactions with nuclear targets

    Full text link
    We are studying production of χc states in 530 GeV/c π− interactions with several targets. χc mesons are observed in the mode (χ→J/ψ+γ). Only photons that converted to e+e− pairs are used in the reconstruction of the χc mesons. Preliminary analysis shows that the fraction of observed J/ψs coming from χc radiative decays is 0.44±0.09±0.08, and that the relative production rate of χc1 to χc2 is 1.3±0.6.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87707/2/1062_1.pd

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Design, performance, and calibration of the CMS hadron-outer calorimeter

    Full text link

    Synchronization and Timing in CMS HCAL

    Get PDF
    The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance

    Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    Get PDF
    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile
    corecore