1,182 research outputs found

    Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432

    Full text link
    Studies of pre-transitional disks, with a gap region between the inner infrared-emitting region and the outer disk, are important to improving our understanding of disk evolution and planet formation. Previous infrared interferometric observations have shown hints of a gap region in the protoplanetary disk around the Herbig Ae star HD~144432. We study the dust distribution around this star with two-dimensional radiative transfer modeling. We compare the model predictions obtained via the Monte-Carlo radiative transfer code RADMC-3D with infrared interferometric observations and the {\SED} of HD~144432. The best-fit model that we found consists of an inner optically thin component at 0.21\enDash0.32~\AU and an optically thick outer disk at 1.4\enDash10~\AU. We also found an alternative model in which the inner sub-AU region consists of an optically thin and an optically thick component. Our modeling suggests an optically thin component exists in the inner sub-AU region, although an optically thick component may coexist in the same region. Our modeling also suggests a gap-like discontinuity in the disk of HD~144432.Comment: 18 pages, 12 figure

    Near-infrared interferometric observation of the Herbig Ae star HD144432 with VLTI/AMBER

    Get PDF
    We study the sub-AU-scale circumstellar environment of the Herbig Ae star HD144432 with near-infrared (NIR) VLTI/AMBER observations to investigate the structure of its inner dust disk. The interferometric observations were carried out with the AMBER instrument in the H and K band. We interpret the measured H- and K-band visibilities, the near- and mid-infrared visibilities from the literature, and the SED of HD144432 by using geometric ring models and ring-shaped temperature-gradient disk models with power-law temperature distributions. We derived a K-band ring-fit radius of 0.17 \pm 0.01 AU and an H-band radius of 0.18 \pm 0.01 AU (for a distance of 145 pc). This measured K-band radius of \sim0.17 AU lies in the range between the dust sublimation radius of \sim0.13 AU (predicted for a dust sublimation temperature of 1500 K and gray dust) and the prediction of models including backwarming (\sim0.27 AU). We found that an additional extended halo component is required in both the geometric and temperature-gradient modeling. In the best temperature- gradient model, the disk consists of two components. The inner part of the disk is a thin ring with an inner radius of \sim0.21 AU, a temperature of \sim1600 K, and a ring thickness \sim0.02 AU. The outer part extends from \sim1 AU to \sim10 AU with an inner temperature of \sim400 K. We find that the disk is nearly face-on with an inclination angle of < 28 degree. Our temperature-gradient modeling suggests that the NIR excess is dominated by emission from a narrow, bright rim located at the dust sublimation radius, while an extended halo component contributes \sim6% to the total flux at 2 {\mu}m. The MIR model emission has a two-component structure with \sim20% flux from the inner ring and the rest from the outer part. This two-component structure suggests a disk gap, which is possibly caused by the shadow of a puffed-up inner rim.Comment: 7 pages, 5 figures, accepted by A&

    Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073

    Get PDF
    The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the processes of accretion and planet migration. We present the most complete published sample of high angular resolution H- and K-band observations of the stars HD 163296 and HD 190073, including 30 previously unpublished nights of observations of the former and 45 nights of the latter with the CHARA long-baseline interferometer, in addition to archival VLTI data. We confirm previous observations suggesting significant near-infrared emission originates within the putative dust evaporation front of HD 163296 and show this is the case for HD 190073 as well. The H- and K-band sizes are the same within (3±3)%(3 \pm 3)\% for HD 163296 and within (6±10)%(6 \pm 10)\% for HD 190073. The radial surface brightness profiles for both disks are remarkably Gaussian-like with little or no sign of the sharp edge expected for a dust evaporation front. Coupled with spectral energy distribution analysis, our direct measurements of the stellar flux component at H and K bands suggest that HD 190073 is much younger (<400 kyr) and more massive (~5.6 M⊙_\odot) than previously thought, mainly as a consequence of the new Gaia distance (891 pc).Comment: 19 pages, 6 figure

    Investigating 2MASS J06593158-0405277: AN FUor Burst in a Triple System?

    Get PDF
    articleFUor outbursts in young stellar objects are the most dramatic events among episodic accretion phenomena. The origin of these bursts is not clear: disk instabilities and/or disk perturbations by an external body being the most viable hypotheses. Here, we report our Very Large Telescope/SINFONI high angular resolution AO-assisted observations of 2MASS J06593158-0405277, which is undergoing a recently discovered FUor outburst. Our observations reveal the presence of an extended disk-like structure around the FUor, a very low-mass companion (2MASS J06593158-0405277B) at ~100 AU in projection, and, possibly, a third closer companion at ~11 AU. These sources appear to be young, displaying accretion signatures. Assuming the components are physically linked, 2MASS J06593158-0405277 would then be one of the very few triple systems observed in FUors.Science Foundation IrelandSTFC Ernest RutherfordMarie Curie CI

    Simultaneous spectral energy distribution and near-infrared interferometry modeling of HD 142666

    Get PDF
    This is the final version. Available from American Astronomical Society via the DOI in this recordWe present comprehensive models of Herbig Ae star, HD 142666, which aim to simultaneously explain its spectral energy distribution (SED) and near-infrared (NIR) interferometry. Our new sub-milliarcsecond resolution CHARA (CLASSIC and CLIMB) interferometric observations, supplemented with archival shorter baseline data from VLTI/PIONIER and the Keck Interferometer, are modeled using centro-symmetric geometric models and an axisymmetric radiative transfer code. CHARA's 330 m baselines enable us to place strong constraints on the viewing geometry, revealing a disk inclined at 58 degrees from face-on with a 160 degree major axis position angle. Disk models imposing vertical hydrostatic equilibrium provide poor fits to the SED. Models accounting for disk scale height inflation, possibly induced by turbulence associated with magneto-rotational instabilities, and invoking grain growth to >1 micron size in the disk rim are required to simultaneously reproduce the SED and measured visibility profile. However, visibility residuals for our best model fits to the SED indicate the presence of unexplained NIR emission, particularly along the apparent disk minor axis, while closure phase residuals indicate a more centro-symmetric emitting region. In addition, our inferred 58 degree disk inclination is inconsistent with a disk-based origin for the UX Ori-type variability exhibited by HD 142666. Additional complexity, unaccounted for in our models, is clearly present in the NIR-emitting region. We propose the disk is likely inclined toward a more edge-on orientation and/or an optically thick outflow component also contributes to the NIR circumstellar flux.C.L.D., S.K., A.K. and A.L. acknowledge support from the ERC Starting Grant \ImagePlanetFormDiscs" (Grant Agreement No. 639889), STFC Rutherford fellowship/grant (ST/J004030/1, ST/K003445/1) and Philip Leverhulme Prize (PLP-2013-110). J.D.M., F.B., and B.K. acknowledge support from NSF grants AST- 1210972 and AST-1506540. We would like to thank Bernard Lazareff, Jean-Baptiste Le Bouquin and Rachel Akeson for their assistance in acquiring archival data for HD142666. This work is based upon observations obtained with the Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory. The CHARA Array is supported by the National Science Foundation under Grant No. AST-1211929. Institutional support has been provided from the GSU College of Arts and Sciences and the GSU Office of the Vice President for Research and Economic Development. The calculations for this paper were performed on the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS, and the University of Exeter

    Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the processes of accretion and planet migration. We present the most complete published sample of high angular resolution H- and K-band observations of the stars HD 163296 and HD 190073, including 30 previously unpublished nights of observations of the former and 45 nights of the latter with the CHARA long-baseline interferometer, in addition to archival VLTI data. We confirm previous observations suggesting significant near-infrared emission originates within the putative dust evaporation front of HD 163296 and show this is the case for HD 190073 as well. The H- and K-band sizes are the same within (3±3)% for HD 163296 and within (6±10)% for HD 190073. The radial surface brightness profiles for both disks are remarkably Gaussian-like with little or no sign of the sharp edge expected for a dust evaporation front. Coupled with spectral energy distribution analysis, our direct measurements of the stellar flux component at H and K bands suggest that HD 190073 is much younger (<400 kyr) and more massive (~5.6 M⊙) than previously thought, mainly as a consequence of the new Gaia distance (891 pc).JDM and BRS acknowledge support from NSF-AST 1506540 and AA acknowledges support from NSF-AST 1311698. CLD, AK, and SK acknowledge support from the ERC Starting Grant “ImagePlanetFormDiscs” (Grant Agreement No. 639889), STFC Rutherford fellowship/grant (ST/J004030/1, ST/K003445/1) and Philip Leverhulme Prize (PLP2013-110). FB acknowledges support from NSF-AST 1210972 and 1445935. MS acknowledges support by the NASA Origins of Solar Systems grant NAG5-9475, and NASA Astrophysics Data Program contract NNH05CD30C. The CHARA Array is supported by the National Science Foundation under Grant No. AST-1211929, AST-1636624, and AST-1715788. Institutional support has been provided from the GSU College of Arts and Sciences and the GSU Office of the Vice President for Research and Economic Development

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− ÎŒ + ΜΌ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08 ^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical, the second systematic and the third is associated to the ratio of fragmentation fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/- 0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table
    • 

    corecore