40 research outputs found

    Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18).

    Get PDF
    The opportunistic pathogenic yeast Candida albicans employs several mechanisms to interfere with the human complement system. This includes the acquisition of host complement regulators, the release of molecules that scavenge complement proteins or block cellular receptors, and the secretion of proteases that inactivate complement components. Secreted aspartic protease 2 (Sap2) was previously shown to cleave C3b, C4b and C5. C. albicans also recruits the complement inhibitor factor H (FH), but yeast-bound FH can enhance the antifungal activity of human neutrophils via binding to complement receptor type 3 (CR3). In this study, we characterized FH binding to human monocyte-derived macrophages. Inhibition studies with antibodies and siRNA targeting CR3 (CD11b/CD18) and CR4 (CD11c/CD18), as well as analysis of colocalization of FH with these integrins indicated that both function as FH receptors on macrophages. Preincubation of C. albicans yeast cells with FH induced increased production of IL-1beta and IL-6 in macrophages. Furthermore, FH enhanced zymosan-induced production of these cytokines. C. albicans Sap2 cleaved FH, diminishing its complement regulatory activity, and Sap2-treatment resulted in less detectable CR3 and CR4 on macrophages. These data show that FH enhances the activation of human macrophages when bound on C. albicans. However, the fungus can inactivate both FH and its receptors on macrophages by secreting Sap2, which may represent an additional means for C. albicans to evade the host innate immune system

    The rare C9 P167S risk variant for age-related macular degeneration increases polymerization of the terminal component of the complement cascade

    Get PDF
    Age-related macular degeneration (AMD) is a complex neurodegenerative eye disease with behavioral and genetic etiology and is the leading cause of irreversible vision loss among elderly Caucasians. Functionally significant genetic variants in the alternative pathway of complement have been strongly linked to disease. More recently, a rare variant in the terminal pathway of complement has been associated with increased risk, Complement component 9 (C9) P167S. To assess the functional consequence of this variant, C9 levels were measured in two independent cohorts of AMD patients. In both cohorts, it was demonstrated that the P167S variant was associated with low C9 plasma levels. Further analysis showed that patients with advanced AMD had elevated sC5b-9 compared to those with non-advanced AMD, although this was not associated with the P167S polymorphism. Electron microscopy of membrane attack complexes (MACs) generated using recombinantly produced wild type or P167S C9 demonstrated identical MAC ring structures. In functional assays, the P167S variant displayed a higher propensity to polymerize and a small increase in its ability to induce hemolysis of sheep erythrocytes when added to C9-depleted serum. The demonstration that this C9 P167S AMD risk polymorphism displays increased polymerization and functional activity provides a rationale for the gene therapy trials of sCD59 to inhibit the terminal pathway of complement in AMD that are underway

    Human iPSC-Derived Retinal Pigment Epithelium: A Model System for Prioritizing and Functionally Characterizing Causal Variants at AMD Risk Loci

    Get PDF
    We evaluate whether human induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells can be used to prioritize and functionally characterize causal variants at age-related macular degeneration (AMD) risk loci. We generated iPSC-RPE from six subjects and show that they have morphological and molecular characteristics similar to those of native RPE. We generated RNA-seq, ATAC-seq, and H3K27ac ChIP-seq data and observed high similarity in gene expression and enriched transcription factor motif profiles between iPSC-RPE and human fetal RPE. We performed fine mapping of AMD risk loci by integrating molecular data from the iPSC-RPE, adult retina, and adult RPE, which identified rs943080 as the probable causal variant at VEGFA. We show that rs943080 is associated with altered chromatin accessibility of a distal ATAC-seq peak, decreased overall gene expression of VEGFA, and allele-specific expression of a non-coding transcript. Our study thus provides a potential mechanism underlying the association of the VEGFA locus with AMD

    The versatile functions of complement C3-derived ligands

    Get PDF
    The complement system is a major component of immune defense. Activation of the complement cascade by foreign substances and altered self-structures may lead to the elimination of the activating agent, and during the enzymatic cascade, several biologically active fragments are generated. Most immune regulatory effects of complement are mediated by the activation products of C3, the central component. The indispensable role of C3 in opsonic phagocytosis as well as in the regulation of humoral immune response is known for long, while the involvement of complement in T-cell biology have been revealed in the past few years. In this review, we discuss the immune modulatory functions of C3-derived fragments focusing on their role in processes which have not been summarized so far. The importance of locally synthesized complement will receive special emphasis, as several immunological processes take place in tissues, where hepatocyte-derived complement components might not be available at high concentrations. We also aim to call the attention to important differences between human and mouse systems regarding C3-mediated processes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Lt

    Complement After Trauma: Suturing Innate and Adaptive Immunity

    Get PDF
    The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma

    Regulation of B cell functions by Toll-like receptors and complement

    No full text
    Abstract B cell functions triggered by the clonally-rearranged antigen-specific B cell receptor (BCR) are regulated by several germ-line encoded receptors – including Toll-like receptors (TLRs) and complement receptors (CRs). Simultaneous or sequential engagement of these structures expressed either on the cell membrane or intracellularly, may fundamentally alter and fine tune activation, antibody and cytokine production of B cells. Here we review the expression and function of TLRs and various C3 fragment binding CRs on B cells, emphasizing their role in different human B cell subsets under physiological and pathological conditions. Studies underlining the importance of the crosstalk between TLRs and CRs in regulating B cell functions are also highlighted

    Complement Receptor Type 1 Suppresses Human B Cell Functions in SLE Patients

    Get PDF
    Complement receptors (CRs) play an integral role in innate immunity and also function to initiate and shape the adaptive immune response. Our earlier results showed that complement receptor type 1 (CR1, CD35) is a potent inhibitor of the B cell receptor- (BCR-) induced functions of human B lymphocytes. Here we show that this inhibition occurs already at the initial steps of B cell activation since ligation of CR1 reduces the BCR-induced phosphorylation of key signaling molecules such as Syk and mitogen activated protein kinases (MAPKs). Furthermore, our data give evidence that although B lymphocytes of active systemic lupus erythematosus (SLE) patients express lower level of CR1, the inhibitory capacity of this complement receptor is still maintained and its ligand-induced clustering results in significant inhibition of the main B cell functions, similar to that found in the case of healthy individuals. Since we have found that reduced CR1 expression of SLE patients does not affect the inhibitory capacity of the receptor, our results further support the therapeutical potential of CD35 targeting the decrease of B cell activation and autoantibody production in autoimmune patients
    corecore