10 research outputs found

    Physical environmental factors that invite older adults to walk for transportation

    Get PDF
    Knowledge on the physical environmental factors that invite older adults to walk for transportation is limited. The current study aimed to investigate the relationships between environmental factors and invitingness to walk for transportation and the potential moderating effects of gender, functional limitations and current walking for transportation behavior. Sixty older participants evaluated 40 panoramic photographs on their invitingness in two ways: a forced choice (first impressions) and a rating task (more deliberate evaluation). Presence of vegetation, benches, and surveillance significantly positively related to both invitingness-measures. Upkeep and presence of historic elements significantly positively related to the assigned invitingness-ratings. For the forced choice task, significant positive relationships emerged for land use and separation between sidewalk and cycling path, but only in functionally limited participants. Environments offering comfort, safety from crime, and pleasantness may attract older adults to walk for transportation. Experimental and on-site studies are needed to elaborate on current findings

    MRI of focal cortical dysplasia

    No full text
    Focal cortical dysplasia (FCD) are histopathologically categorized in ILAE type I to III. Mild malformations of cortical development (mMCD) including those with oligodendroglial hyperplasia (MOGHE) are to be integrated into this classification yet. Only FCD type II have distinctive MRI and molecular genetics alterations so far. Subtle FCD including FCD type II located in the depth of a sulcus are often overlooked requiring the use of dedicated sequences (MP2RAGE, FLAWS, EDGE) and/or voxel (VBM)- or surface-based (SBM) postprocessing. The added value of 7 Tesla MRI has to be proven yet

    Measuring the Head Circumference on MRI in Children: an Interrater Study

    No full text
    Purpose!#!The head circumference is typically used as a surrogate parameter for the development of the central nervous system and intracranial structures and is an important clinical parameter in neuropediatrics. As magnetic resonance images (MRI) can be freely zoomed, visual analysis of the head size often relies on impressions, such as the craniofacial ratio or a simplified gyral pattern. Aim of this study was to validate an MRI-based method to measure the head circumference.!##!Methods!#!Head circumferences of 85 children (41 microcephalies, 22 macrocephalies and 22 normal controls; 47 male, mean age 3.22 ± 2.45 years, range 0.19-10.42 years) were retrospectively measured using sagittal 3D-T1w (MPRAGE) data sets. Three readers independently placed an ovoid region of interest in an axial plane starting from the supraorbital bulge and covering the largest supra-auricular head circumference. Clinical measurements of the head circumference taken within an acceptable period served for comparative purposes. Reliability was assessed by calculating the total error of measurement (TEM) and the intraclass correlation coefficient (ICC).!##!Results!#!A close correlation was found between MRI-based and clinical measurements. The interrater reliability was excellent (ICC 0.985, 95% confidence interval 0.952-0.993). Absolute TEM ranged from 0.47-0.75, resulting in relative TEM ranging from 1.0-1.6%. Thus, TEMs were classified as acceptable. The mean accuracy of MRI-based measurements was high at 0.94.!##!Conclusion!#!The head circumference can be reliably determined with a simple measurement on 3D sequences using multiplanar reformations. This approach may help to diagnose microcephaly and macrocephaly, especially when the head circumference is not reported by the referring physician

    Diffusion tensor imaging in unclear intramedullary tumor-suspected lesions allows separating tumors from inflammation

    No full text
    Design!#!Prospective diagnostic study.!##!Objectives!#!Primary imaging-based diagnosis of spinal cord tumor-suspected lesions is often challenging. The identification of the definite entity is crucial for dedicated treatment and therefore reduction of morbidity. The aim of this trial was to investigate specific quantitative signal patterns to differentiate unclear intramedullary tumor-suspected lesions based on diffusion tensor imaging (DTI).!##!Setting!#!Medical Center - University of Freiburg, Germany.!##!Methods!#!Forty patients with an unclear tumor-suspected lesion of the spinal cord prospectively underwent DTI. Primary diagnosis was determined by histological or clinical work-up or remained indeterminate with follow-up. DTI metrics (FA/ADC) were evaluated at the central lesion area, lesion margin, edema, and normal spinal cord and compared between different diagnostic groups (ependymomas, other spinal cord tumors, inflammations).!##!Results!#!Mean DTI metrics for all spinal cord tumors (n = 18) showed significantly reduced FA and increased ADC values compared to inflammatory lesions (n = 8) at the lesion margin (p < 0.001, p = 0.001) and reduced FA at the central lesion area (p < 0.001). There were no significant differences comparing the neoplastic subgroups of ependymomas (n = 10) and other spinal cord tumors (n = 8), but remaining differences for both compared to the inflammation subgroup. We found significant higher ADC (p = 0.040) and a trend to decreased FA (p = 0.081) for ependymomas compared to inflammations at the edema.!##!Conclusion!#!Even if distinct differentiation of ependymomas from other spinal cord neoplasms was not possible based on quantitative DTI metrics, FA and ADC were feasible to separate inflammatory lesions. This may avoid unnecessary surgery in patients with unclear intramedullary tumor-suspected lesions

    Spinal Cord Motion in Degenerative Cervical Myelopathy: The Level of the Stenotic Segment and Gender Cause Altered Pathodynamics

    No full text
    In degenerative cervical myelopathy (DCM), focally increased spinal cord motion has been observed for C5/C6, but whether stenoses at other cervical segments lead to similar pathodynamics and how severity of stenosis, age, and gender affect them is still unclear. We report a prospective matched-pair controlled trial on 65 DCM patients. A high-resolution 3D T2 sampling perfection with application-optimized contrasts using different flip angle evolution (SPACE) and a phase-contrast magnetic resonance imaging (MRI) sequence were performed and automatically segmented. Anatomical and spinal cord motion data were assessed per segment from C2/C3 to C7/T1. Spinal cord motion was focally increased at a level of stenosis among patients with stenosis at C4/C5 (n = 14), C5/C6 (n = 33), and C6/C7 (n = 10) (p < 0.033). Patients with stenosis at C2/C3 (n = 2) and C3/C4 (n = 6) presented a similar pattern, not reaching significance. Gender was a significant predictor of higher spinal cord dynamics among men with stenosis at C5/C6 (p = 0.048) and C6/C7 (p = 0.033). Age and severity of stenosis did not relate to spinal cord motion. Thus, the data demonstrates focally increased spinal cord motion depending on the specific level of stenosis. Gender-related effects lead to dynamic alterations among men with stenosis at C5/C6 and C6/C7. The missing relation of motion to severity of stenosis underlines a possible additive diagnostic value of spinal cord motion analysis in DCM

    Neural communication patterns underlying conflict detection, resolution, and adaptation

    No full text
    In an ever-changing environment, selecting appropriate responses in conflicting situations is essential for biological survival and social success and requires cognitive control, which is mediated by dorsomedial prefrontal cortex (DMPFC) and dorsolateral prefrontal cortex (DLPFC). How these brain regions communicate during conflict processing (detection, resolution, and adaptation), however, is still unknown. The Stroop task provides a well-established paradigm to investigate the cognitive mechanisms mediating such response conflict. Here, we explore the oscillatory patterns within and between the DMPFC and DLPFC in human epilepsy patients with intracranial EEG electrodes during an auditory Stroop experiment. Data from the DLPFC were obtained from 12 patients. Thereof four patients had additional DMPFC electrodes available for interaction analyses. Our results show that an early θ (4–8 Hz) modulated enhancement of DLPFC γ-band (30–100 Hz) activity constituted a prerequisite for later successful conflict processing. Subsequent conflict detection was reflected in a DMPFC θ power increase that causally entrained DLPFC θ activity (DMPFC to DLPFC). Conflict resolution was thereafter completed by coupling of DLPFC γ power to DMPFC θ oscillations. Finally, conflict adaptation was related to increased postresponse DLPFC γ-band activity and to θ coupling in the reverse direction (DLPFC to DMPFC). These results draw a detailed picture on how two regions in the prefrontal cortex communicate to resolve cognitive conflicts. In conclusion, our data show that conflict detection, control, and adaptation are supported by a sequence of processes that use the interplay of θ and γ oscillations within and between DMPFC and DLPFC

    DDB2 promotes chromatin decondensation at UV-induced DNA damage

    No full text
    Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains
    corecore