30 research outputs found

    Choi's Proof and Quantum Process Tomography

    Get PDF
    Quantum process tomography is a procedure by which an unknown quantum operation can be fully experimentally characterized. We reinterpret Choi's proof of the fact that any completely positive linear map has a Kraus representation [Lin. Alg. and App., 10, 1975] as a method for quantum process tomography. Furthermore, the analysis for obtaining the Kraus operators are particularly simple in this method.Comment: submitted to special issue of JMP on QI

    When is better really better? Individuals' experiences of treatment for OAB with anticholinergic medication

    Get PDF
    Overactive bladder (OAB) has been found to have a number of psychological consequences, including anxiety, depression and shame. However, there is little research on how drug treatment, which has been found to be effective at reducing physical symptoms, impacts on these psychological effects. This study aimed to examine patients’ experiences of anticholinergic treatment for OAB, and the impact of both OAB and its treatment on psychological well-being. A cross-sectional, qualitative interview design with a secondary care outpatient sample was used. The approach was idiographic and sought to understand the detailed complexities and nuances of patient experiences. This small-scale qualitative study found that, even where there had been symptom reduction, patients did not feel ‘better’, and found it difficult to let go of worries and fears around OAB. These findings suggest that a person with OAB may need support even after a ‘successful’ treatment, as OAB continues to be at the centre of patients’ lives

    Experimental Realization of A Two Bit Phase Damping Quantum Code

    Full text link
    Using nuclear magnetic resonance techniques, we experimentally investigated the effects of applying a two bit phase error detection code to preserve quantum information in nuclear spin systems. Input states were stored with and without coding, and the resulting output states were compared with the originals and with each other. The theoretically expected result, net reduction of distortion and conditional error probabilities to second order, was indeed observed, despite imperfect coding operations which increased the error probabilities by approximately 5%. Systematic study of the deviations from the ideal behavior provided quantitative measures of different sources of error, and good agreement was found with a numerical model. Theoretical questions in quantum error correction in bulk nuclear spin systems including fidelity measures, signal strength and syndrome measurements are discussed.Comment: 21 pages, 17 figures, mypsfig2, revtex. Minor changes made to appear in PR

    Development and validation of self-reported line drawings of the modified Beighton score for the assessment of generalised joint hypermobility

    Get PDF
    Background: The impracticalities and comparative expense of carrying out a clinical assessment is an obstacle in many large epidemiological studies. The purpose of this study was to develop and validate a series of electronic self-reported line drawing instruments based on the modified Beighton scoring system for the assessment of selfreported generalised joint hypermobility.Methods: Five sets of line drawings were created to depict the 9-point Beighton score criteria. Each instrument consisted of an explanatory question whereby participants were asked to select the line drawing which best represented their joints. Fifty participants completed the self-report online instrument on two occasions, before attending a clinical assessment. A blinded expert clinical observer then assessed participants’ on two occasions,using a standardised goniometry measurement protocol. Validity of the instrument was assessed by participant observeragreement and reliability by participant repeatability and observer repeatability using unweighted Cohen’s kappa (k). Validity and reliability were assessed for each item in the self-reported instrument separately, and for the sum of the total scores. An aggregate score for generalised joint hypermobility was determined based on a Beighton score of 4 or more out of 9.Results: Observer-repeatability between the two clinical assessments demonstrated perfect agreement (k 1.00; 95%CI 1.00, 1.00). Self-reported participant-repeatability was lower but it was still excellent (k 0.91; 95% CI 0.74, 1.00). Theparticipant-observer agreement was excellent (k 0.96; 95% CI 0.87, 1.00). Validity was excellent for the self-report instrument, with a good sensitivity of 0.87 (95% CI 0.81, 0.91) and excellent specificity of 0.99 (95% CI 0.98, 1.00).Conclusions: The self-reported instrument provides a valid and reliable assessment of the presence of generalisedjoint hypermobility and may have practical use in epidemiological studie

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore