31 research outputs found

    The Prevalence and Volumetry of Pituitary Cysts in Children with Growth Hormone Deficiency and Idiopathic Short Stature

    Get PDF
    Background Pituitary cysts have been speculated to cause endocrinopathies. We sought to describe the prevalence and volumetry of pituitary cysts in patients with growth hormone deficiency (GHD) and idiopathic short stature (ISS). Methods Six hundred and eighteen children evaluated for growth failure at the Division of Pediatric Endocrinology at New York Medical College between the years 2002 and 2012, who underwent GH stimulation testing and had a brain magnetic resonance imaging (MRI) prior to initiating GH treatment were randomly selected to be a part of this study. High resolution MRI was used to evaluate the pituitary gland for size and the presence of a cyst. Cyst prevalence, cyst volume and percentage of the gland occupied by the cyst (POGO) were documented. Results Fifty-six patients had a cyst, giving an overall prevalence of 9.1%. The prevalence of cysts in GHD patients compared to ISS patients was not significant (13.5% vs. 5.7%, p=0.46). Mean cyst volume was greater in GHD patients than ISS patients (62.0 mm3 vs. 29.4 mm3, p=0.01). POGO for GHD patients was significantly greater (p=0.003) than for ISS patients (15.3%+/-12.8 vs. 7.1%+/-8.0). Observers were blinded to patient groups. Conclusions GHD patients had a significantly greater volume and POGO compared to ISS patients. This raises the question of whether cysts are implicated in the pathology of growth failure

    An integrated cell atlas of the lung in health and disease

    Get PDF
    Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas

    Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference

    No full text
    Abstract TadA-derived cytosine base editors (TadCBEs) enable programmable C•G-to-T•A editing while retaining the small size, high on-target activity, and low off-target activity of TadA deaminases. Existing TadCBEs, however, exhibit residual A•T-to-G•C editing at certain positions and lower editing efficiencies at some sequence contexts and with non-SpCas9 targeting domains. To address these limitations, we use phage-assisted evolution to evolve CBE6s from a TadA-mediated dual cytosine and adenine base editor, discovering mutations at N46 and Y73 in TadA that prevent A•T-to-G•C editing and improve C•G-to-T•A editing with expanded sequence-context compatibility, respectively. In E. coli, CBE6 variants offer high C•G-to-T•A editing and no detected A•T-to-G•C editing in any sequence context. In human cells, CBE6 variants exhibit broad Cas domain compatibility and retain low off-target editing despite exceeding BE4max and previous TadCBEs in on-target editing efficiency. Finally, we show that the high selectivity of CBE6 variants is well-suited for therapeutically relevant stop codon installation without creating unwanted missense mutations from residual A•T-to-G•C editing

    The Evolution of Pituitary Cysts in Growth Hormone-Treated Children

    No full text
    OBJECTIVES: We have previously shown that pituitary cysts may affect growth hormone secretion. This study sought to determine cyst evolution during growth hormone treatment in children. METHODS: Forty-nine patients with short stature, a pituitary cyst, and at least two brain MRI scans were included. The percent of the pituitary gland occupied by the cyst (POGO) was calculated, and a cyst with a POGO of ≤15% was considered small, while a POGO \u3e15% was considered large. RESULTS: Thirty-five cysts were small, and 14 were large. Five of the 35 small cysts grew into large cysts, while 6 of the 14 large cysts shrunk into small cysts. Of 4 cysts that fluctuated between large and small, 3 presented as large and 1 as small. Small cysts experienced greater change in cyst volume (CV) (mean=61.5%) than large cysts (mean=-0.4%). However, large cysts had a greater net change in CV (mean=44.2 mm) than small cysts (mean=21.0 mm). Older patients had significantly larger mean pituitary volume than younger patients (435.4 mm vs. 317.9 mm) and significantly larger mean CV than younger patients (77.4 mm vs. 45.2 mm), but there was no significant difference in POGO between groups. CONCLUSIONS: Pituitary cyst size can vary greatly over time. Determination of POGO over time is a useful marker for determining the possibility of a pathologic effect on pituitary function since it factors both cyst and gland volume. Large cysts should be monitored closely, given their extreme, erratic behavior

    Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region : an individual-based pooled analysis of 40 twin cohorts

    Get PDF
    Background: Genes and the environment contribute to variation in adult body mass index [BMI (in kg/m(2))], but factors modifying these variance components are poorly understood. Objective: We analyzed genetic and environmental variation in BMI between men and women from young adulthood to old age from the 1940s to the 2000s and between cultural-geographic regions representing high (North America and Australia), moderate (Europe), and low (East Asia) prevalence of obesity. Design: We used genetic structural equation modeling to analyze BMI in twins >= 20 y of age from 40 cohorts representing 20 countries (140,379 complete twin pairs). Results: The heritability of BMI decreased from 0.77 (95% CI: 0.77, 0.78) and 0.75 (95% CI: 0.74, 0.75) in men and women 2029 y of age to 0.57 (95% CI: 0.54, 0.60) and 0.59 (95% CI: 0.53, 0.65) in men 70-79 y of age and women 80 y of age, respectively. The relative influence of unique environmental factors correspondingly increased. Differences in the sets of genes affecting BMI in men and women increased from 20-29 to 60-69 y of age. Mean BMI and variances in BMI increased from the 1940s to the 2000s and were greatest in North America and Australia, followed by Europe and East Asia. However, heritability estimates were largely similar over measurement years and between regions. There was no evidence of environmental factors shared by co-twins affecting BMI. Conclusions: The heritability of BMI decreased and differences in the sets of genes affecting BMI in men and women increased from young adulthood to old age. The heritability of BMI was largely similar between cultural-geographic regions and measurement years, despite large differences in mean BMI and variances in BMI. Our results show a strong influence of genetic factors on BMI, especially in early adulthood, regardless of the obesity level in the population.Peer reviewe

    SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes

    No full text
    We investigated SARS-CoV-2 potential tropism by surveying expression of viral entry-associated genes in single-cell RNA-sequencing data from multiple tissues from healthy human donors. We co-detected these transcripts in specific respiratory, corneal and intestinal epithelial cells, potentially explaining the high efficiency of SARS-CoV-2 transmission. These genes are co-expressed in nasal epithelial cells with genes involved in innate immunity, highlighting the cells’ potential role in initial viral infection, spread and clearance. The study offers a useful resource for further lines of inquiry with valuable clinical samples from COVID-19 patients and we provide our data in a comprehensive, open and user-friendly fashion at www.covid19cellatlas.org

    Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity

    No full text
    AbstractPatients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection.</jats:p

    Does the sex of one’s co-twin affect height and BMI in adulthood? A study of dizygotic adult twins from 31 cohorts

    Get PDF
    Background: The comparison of traits in twins from opposite-sex (OS) and same-sex (SS) dizygotic twin pairs is considered a proxy measure of prenatal hormone exposure. To examine possible prenatal hormonal influences on anthropometric traits, we compared mean height, body mass index (BMI), and the prevalence of being overweight or obese between men and women from OS and SS dizygotic twin pairs. Methods: The data were derived from the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) database, and included 68,494 SS and 53,808 OS dizygotic twin individuals above the age of 20 years from 31 twin cohorts representing 19 countries. Zygosity was determined by questionnaires or DNA genotyping depending on the study. Multiple regression and logistic regression models adjusted for cohort, age, and birth year with the twin type as a predictor were carried out to compare height and BMI in twins from OS pairs with those from SS pairs and to calculate the adjusted odds ratios and 95% confidence intervals for being overweight or obese. Results: OS females were, on average, 0.31 cm (95% confidence interval (CI) 0.20, 0.41) taller than SS females. OS males were also, on average, taller than SS males, but this difference was only 0.14 cm (95% CI 0.02, 0.27). Mean BMI and the prevalence of overweight or obesity did not differ between males and females from SS and OS twin pairs. The statistically significant differences between OS and SS twins for height were small and appeared to reflect our large sample size rather than meaningful differences of public health relevance. Conclusions: We found no evidence to support the hypothesis that prenatal hormonal exposure or postnatal socialization (i.e., having grown up with a twin of the opposite sex) has a major impact on height and BMI in adulthood.Medicine, Faculty ofNon UBCPsychiatry, Department ofReviewedFacult

    Genome-wide association study reveals two new risk loci for bipolar disorder

    No full text
    Bipolar disorder (BD) is a common and highly heritable mental illness and genome-wide association studies (GWAS) have robustly identified the first common genetic variants involved in disease aetiology. The data also provide strong evidence for the presence of multiple additional risk loci, each contributing a relatively small effect to BD susceptibility. Large samples are necessary to detect these risk loci. Here we present results from the largest BD GWAS to date by investigating 2.3 million single-nucleotide polymorphisms (SNPs) in a sample of 24,025 patients and controls. We detect 56 genome-wide significant SNPs in five chromosomal regions including previously reported risk loci ANK3, ODZ4 and TRANK1, as well as the risk locus ADCY2 (5p15.31) and a region between MIR2113 and POU3F2 (6q16.1). ADCY2 is a key enzyme in cAMP signalling and our finding provides new insights into the biological mechanisms involved in the development of BD
    corecore