152 research outputs found

    A quantitative description of the transition between intuitive altruism and rational deliberation in iterated Prisoner's Dilemma experiments

    Full text link
    What is intuitive: pro-social or anti-social behaviour? To answer this fundamental question, recent studies analyse decision times in game theory experiments under the assumption that intuitive decisions are fast and that deliberation is slow. These analyses keep track of the average time taken to make decisions under different conditions. Lacking any knowledge of the underlying dynamics, such simplistic approach might however lead to erroneous interpretations. Here we model the cognitive basis of strategic cooperative decision making using the Drift Diffusion Model to discern between deliberation and intuition and describe the evolution of the decision making in iterated Prisoner's Dilemma experiments. We find that, although initially people's intuitive decision is to cooperate, rational deliberation quickly becomes dominant over an initial intuitive bias towards cooperation, which is fostered by positive interactions as much as frustrated by a negative one. However, this initial pro-social tendency is resilient, as after a pause it resets to the same initial value. These results illustrate the new insight that can be achieved thanks to a quantitative modelling of human behavior

    Beliefs about others' intentions determine whether cooperation is the faster choice

    Get PDF
    Is collaboration the fast choice for humans? Past studies proposed that cooperation is a behavioural default, based on Response Times (RT) findings. Here we contend that the individual’s reckoning of the immediate social environment shapes her predisposition to cooperate and, hence, response latencies. In a social dilemma game, we manipulate the beliefs about the partner’s intentions to cooperate and show that they act as a switch that determines cooperation and defection RTs; when the partner’s intention to cooperate is perceived as high, cooperation choices are speeded up, while defection is slowed down. Importantly, this social context effect holds across varying expected payoffs, indicating that it modulates behaviour regardless of choices’ similarity in monetary terms. Moreover, this pattern is moderated by individual variability in social preferences: Among conditional cooperators, high cooperation beliefs speed up cooperation responses and slow down defection. Among free-riders, defection is always faster and more likely than cooperation, while high cooperation beliefs slow down all decisions. These results shed new light on the conflict of choices account of response latencies, as well as on the intuitive cooperation hypothesis, and can help to correctly interpret and reconcile previous, apparently contradictory results, by considering the role of context in social dilemmas

    Adaptive Sampling of Information in Perceptual Decision-Making

    Get PDF
    In many perceptual and cognitive decision-making problems, humans sample multiple noisy information sources serially, and integrate the sampled information to make an overall decision. We derive the optimal decision procedure for two-alternative choice tasks in which the different options are sampled one at a time, sources vary in the quality of the information they provide, and the available time is fixed. To maximize accuracy, the optimal observer allocates time to sampling different information sources in proportion to their noise levels. We tested human observers in a corresponding perceptual decision-making task. Observers compared the direction of two random dot motion patterns that were triggered only when fixated. Observers allocated more time to the noisier pattern, in a manner that correlated with their sensory uncertainty about the direction of the patterns. There were several differences between the optimal observer predictions and human behaviour. These differences point to a number of other factors, beyond the quality of the currently available sources of information, that influences the sampling strategy

    Giving is a question of time: Response times and contributions to a real world public good

    Get PDF
    Recent experimental research has examined whether contributions to public goods can be traced back to intuitive or deliberative decision-making, using response times in public good games in order to identify the specific decision process at work. In light of conflicting results, this paper reports on an analysis of response time data from an online experiment in which over 3400 subjects from the general population decided whether to contribute to a real world public good. The between-subjects evidence confirms a strong positive link between contributing and deliberation and between free-riding and intuition. The average response time of contributors is 40 percent higher than that of free-riders. A within-subject analysis reveals that for a given individual, contributing significantly increases and free-riding significantly decreases the amount of deliberation required

    Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI

    Get PDF
    Current computational accounts posit that, in simple binary choices, humans accumulate evidence in favour of the different alternatives before committing to a decision. Neural correlates of this accumulating activity have been found during perceptual decisions in parietal and prefrontal cortex; however the source of such activity in value-based choices remains unknown. Here we use simultaneous EEG–fMRI and computational modelling to identify EEG signals reflecting an accumulation process and demonstrate that the within- and across-trial variability in these signals explains fMRI responses in posterior-medial frontal cortex. Consistent with its role in integrating the evidence prior to reaching a decision, this region also exhibits task-dependent coupling with the ventromedial prefrontal cortex and the striatum, brain areas known to encode the subjective value of the decision alternatives. These results further endorse the proposition of an evidence accumulation process during value-based decisions in humans and implicate the posterior-medial frontal cortex in this process

    Activity in Inferior Parietal and Medial Prefrontal Cortex Signals the Accumulation of Evidence in a Probability Learning Task

    Get PDF
    In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes
    corecore