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Abstract 28 

How do we choose when confronted with many alternatives? There is surprisingly little decision 29 

modeling work with large choice sets, despite their prevalence in everyday life. Even further, there is an 30 

apparent disconnect between research in small choice sets, supporting a process of gaze-driven evidence 31 

accumulation, and research in larger choice sets, arguing for models of optimal choice, satisficing, and 32 

hybrids of the two. Here, we bridge this divide by developing and comparing different versions of these 33 

models in a many-alternative value-based choice experiment with 9, 16, 25, or 36 alternatives. We find 34 

that human choices are best explained by models incorporating an active effect of gaze on subjective 35 

value. A gaze-driven, probabilistic version of satisficing generally outperforms the other models, though 36 

gaze-driven evidence accumulation and comparison performs comparably well with 9 alternatives and is 37 

overall most accurate in capturing the relation between gaze allocation and choice. 38 

 39 

Keywords. decision making, many-alternative forced choice, eye movements, gaze bias, evidence 40 

accumulation, satisficing  41 
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Introduction 42 

In everyday life, we are constantly faced with value-based choice problems involving many 43 

possible alternatives. For instance, when choosing what movie to watch or what food to order off a menu, 44 

we must often search through a large number of alternatives. While much effort has been devoted to 45 

understanding the mechanisms underlying two-alternative forced choice (2AFC) in value-based decision-46 

making (Alós-Ferrer, 2018; Bhatia, 2013; Boorman, Rushworth & Behrens, 2013; Clithero, 2018; De 47 

Martino, Kumaran, Seymour, & Dolan, 2006; Hare, Camerer & Rangel, 2009; Hunt, Malalasekera, de 48 

Berker, Miranda, Farmer, et al., 2018; Hutcherson, Bushong & Rangel, 2015; Krajbich, Armel & Rangel, 49 

2010; Mormann, Malmaud, Huth, et al., 2010; Philiastides & Ratcliff, 2013; Polonia, Woodford & Ruff, 50 

2019; Rodriquez, Turner & McClure, 2014; Webb. 2019) and choices involving three to four alternatives 51 

(Berkowitsch, Scheibehenne & Rieskamp, 2014; Diederich, 2003; Gluth, Spektor & Rieskamp, 2018; 52 

Gluth, Kern, Kortmann & Vitali, 2020; Krajbich & Rangel, 2011; Noguchi & Stewart, 2014; Roe, 53 

Busemeyer & Townsend, 2001; Towal, Mormann, & Koch, 2013; Trueblood, Brown & Heathcote, 2014; 54 

Usher & McClelland, 2004), comparably little has been done to investigate many-alternative forced 55 

choices (MAFC, more than four alternatives) (Ashby, Jekel, Dickert & Glöckner, 2016; Payne, 1976; 56 

Reutskaja, Nagel, Camerer, & Rangel, 2011). 57 

Prior work on 2AFC has indicated that simple value-based choices are made through a process of 58 

gaze-driven evidence accumulation and comparison, as captured by the attentional drift diffusion model 59 

(aDDM; Krajbich, Armel & Rangel, 2010; Krajbich & Rangel, 2011; Smith & Krajbich, 2019) and the 60 

gaze-weighted linear accumulator model (GLAM; Thomas, Molter, Krajbich et al., 2019). These models 61 

assume that noisy evidence in favor of each alternative is compared and accumulated over time. Once 62 

enough evidence is accumulated for one alternative relative to the others, that alternative is chosen. 63 

Importantly, gaze guides the accumulation process, with temporarily higher accumulation rates for 64 

looked-at alternatives. One result of this process is that longer gaze towards one alternative should 65 

generally increase the probability that it is chosen, in line with recent empirical findings (Amasino, 66 
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Sullivan, Kranton & Huettel, 2019; Armel, Beaumel & Rangel, 2008; Cavanagh, Wiecki, Kochar, & 67 

Frank, 2014; Fisher, 2017; Folke, Jacobsen, Fleming, & De Martino, 2017; Gluth et al., 2018, 2020; 68 

Konovalov & Krajbich, 2016; Pärnamets, Johansson, & Hall et al., 2015; Shimojo, Simion, Shimojo, & 69 

Scheier, 2003; Stewart, Hermens & Matthews, 2016; Vaidya & Fellows, 2015). While this framework can 70 

in theory be extended to MAFC (Gluth et al., 2020; Krajbich & Rangel, 2011; Thomas et al., 2019; Towal 71 

et al., 2013), it is still unknown whether it can account for choices from truly large choice sets. 72 

In contrast, past research in MAFC suggests that people may resort to a “satisficing” strategy. 73 

Here, the idea is that people set a minimum threshold on what they are willing to accept and search 74 

through the alternatives until they find one that is above that threshold (McCall, 1970; Simon, 1955, 75 

1956, 1957, 1959; Schwartz, Ward, Monterosso et al., 2002; Stüttgen, Boatwright & Monroe, 2012). 76 

Satisficing has been observed in a variety of choice scenarios, including tasks with a large number of 77 

alternatives (Caplin, Dean, & Martin, 2011; Stüttgen et al., 2012), patients with damage to the prefrontal 78 

cortex (Fellows, 2006), inferential decisions (Gigerenzer & Goldstein, 1996), survey questions (Krosnick, 79 

1991), risky financial decisions (Fellner, Güth, & Maciejovsky, 2009), and with increasing task 80 

complexity (Payne, 1976). Past work has also investigated MAFC under strict time limits (Reutskaja et 81 

al., 2011). There, the authors find that the best model is a probabilistic version of satisficing in which the 82 

time point when individuals stop their search and make a choice follows a probabilistic function of 83 

elapsed time and cached (i.e., highest-seen) item value (Chow & Robbins, 1961; Rapoport & Tversky, 84 

1966; Robbins, Sigmund & Chow, 1971; Simon, 1955, 1959).  85 

There is some empirical evidence that points towards a gaze-driven evidence accumulation and 86 

comparison process for MAFC. For instance, individuals look back and forth between alternatives as if 87 

comparing them (Russo & Rosen, 1975). Also, frequently looking at an item dramatically increases the 88 

probability of choosing that item (Chandon, Hutchinson, Bradlow, & Young, 2009). Empirical evidence 89 

has further indicated that individuals use a gaze-dependent evidence accumulation process when making 90 

choices from sets of up to eight alternatives (Ashby et al., 2016).  91 

Here, we sought to study the mechanisms underlying MAFC, by developing and comparing 92 
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different decision models on choice, response-time (RT), liking rating, and gaze data from a choice task 93 

with sets of 9, 16, 25, and 36 snack foods. These models combine an either passive or active account of 94 

gaze in the decision process with three distinct accounts of the decision mechanism, namely probabilistic 95 

satisficing and two variants of evidence accumulation, which either perform relative comparisons 96 

between the alternatives or evaluate each alternative independently. 97 

In terms of overall goodness-of-fit, we find that the models with active gaze consistently 98 

outperform their passive-gaze counterparts. That is, gaze does more than bring an alternative into the 99 

consideration set, it actively increases the subjective value of the attended alternative. The probabilistic 100 

satisficing model consistently performs best at capturing individuals’ choices and RTs, with the relative 101 

accumulator model performing comparably well with 9 alternatives, but then falling behind for larger 102 

sets. Additionally, relative accumulation steadily loses ground to independent accumulation as the set 103 

sizes increase. Nevertheless, relative accumulation provides the overall best account of the empirically 104 

observed positive relation of gaze allocation and choice behaviour.  105 
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Results 106 

Experiment design 107 

 108 

Figure 1. Choice task. A: Subjects chose a snack-food item (e.g., chocolate bars, chips, gummy 109 
bears) from choice sets with 9, 16, 25, or 36 items. There were no time restrictions during the choice 110 
phase. Subjects indicated when they had made a choice by pressing the spacebar of a keyboard in front of 111 
them. Subsequently, subjects had 3 seconds to indicate their choice by clicking on their chosen item with 112 
a mouse cursor that appeared at the center of the screen. Subjects used the same hand to press the space 113 
bar and navigate the mouse cursor. For an overview of the choice indication times (defined as the time 114 
difference between the space bar press and the click on an item), see Figure 1-figure supplement 1. Trials 115 
from the four set sizes were randomly intermixed. Before the beginning of each choice trial, subjects had 116 
to fixate a central fixation cross for 0.5 s. Eye movement data were only collected during the central 117 
fixation and choice phase. B: After completing the choice task, subjects indicated how much they would 118 
like to eat each snack food item on a 7-point rating scale from -3 (not at all) to 3 (very much). For an 119 
overview of the liking rating distributions, see Figure 1-figure supplement 2-3. The tasks used real food 120 
items that were familiar to the subjects. 121 

 122 
In each of 200 choice trials, subjects (N = 49) chose which snack food they would like to eat at 123 

the end of the experiment, out of a set of either 9, 16, 25, or 36 alternatives (50 trials per set size 124 

condition; see Fig. 1 and “Methods”). We recorded subjects’ choices, RTs, and eye-movements. After the 125 

choice task, subjects also rated each food on an integer scale from -3 (i.e., not at all) to +3 (i.e., very 126 

much) to indicate how much they would like to eat each item at the end of the experiment (for an 127 

overview of the liking rating distributions, see Figure 1-figure supplement 2-3). 128 
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Visual search 129 

 130 
 Figure 2: Gaze psychometrics for each choice set size. A-H: The probability of looking at an item 131 
(A-D) as well as the mean duration of item gazes (E-H) increases with the liking rating of the item. Solid 132 
lines indicate initial gazes to an item, while dotted lines indicate all subsequent returning gazes to the 133 
item. I-L: Initial gazes to an item are in general shorter in duration than all subsequent gazes to the same 134 
item in a trial. The last gaze of a trial is in general longer in duration if it is to the chosen item than when 135 
it is to any other item. See the “Visual Search” section for the corresponding statistical analyses. Colors 136 
indicate choice set sizes. Violin plots show a kernel density estimate of the distribution of subject means 137 
with boxplots inside of them. 138 

 139 

To first establish a general understanding of the visual search process in MAFC, we performed an 140 

exploratory analysis of subjects’ visual search behaviour (Figs. 2-3). We define a gaze to an item as all 141 
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consecutive fixations towards the item that happen without any interrupting fixation to other parts of the 142 

choice screen. Further, we define the cumulative gaze of an item as the fraction of total trial time that the 143 

subject spent looking at the item (see “Methods”). 144 

All reported regression coefficients represent fixed effects from mixed-effects linear (for 145 

continuous dependent variables) and logit (for binary dependent variables) regression models, which 146 

included random intercepts and slopes for each subject (unless noted otherwise). The 94% highest density 147 

intervals (HDI; 94% is the default in ArviZ 0.9.0 (Kumar, Carroll, Hartikainen & Martin, 2019) which we 148 

used for our analyses) of the fixed effect coefficients are given in brackets, unless noted otherwise (see 149 

“Methods”).  150 

The probability that participants looked at an item in a choice set increased with the item’s liking 151 

rating, while decreasing with choice set size (Fig. 2 A-D; β = 2.0%, 94% HDI = [1.6, 2.3] per rating, -152 

1.4%, 94% HDI = [-1.5, -1.3] per item) (in line with recent empirical findings: Cavanagh, Malalasekera, 153 

Miranda, Hunt, & Kennerley, 2019; Gluth et al., 2020). Similarly, the probability that participants’ gaze 154 

returned to an item also increased with the item’s rating while decreasing with choice set size (Fig. 2 A-155 

D; β = 1.6%, 94% HDI = [1.4, 1.8] per rating, -0.65%, 94% HDI = [-0.74, -0.55] per item).  156 

Gaze durations also increased with the item’s rating (Fig. 2 E-H; β = 11 ms, 94% HDI = [8, 13] 157 

per rating) as well as over the course of a trial (β = 0.79 ms, 94% HDI = [0.36, 1.25] per additional gaze 158 

in a trial), while decreasing with choice set size (β = -1.17 ms, 94% HDI = [-1.39, -0.94] per item). Initial 159 

gazes to an item were generally shorter in duration than all later gazes to the same item in the same trial 160 

(Fig. 2 I-L; β = 44 ms, 94% HDI = [37, 51] difference between returning and initial gazes). Interestingly, 161 

the duration of the last gaze in a trial was dependent on whether it was to the chosen item or not (Fig. 2 I-162 

L): last gaze durations to the chosen item were in general longer than last gaze durations to non-chosen 163 

items (β = 162 ms, 94% HDI = [122, 201] difference between last gazes to chosen and non-chosen items). 164 

Next, we focused on subjects’ visual search trajectories (Fig. 3): For each trial, we first 165 

normalized time to a range from 0 - 100% and then binned it into 10% intervals. We then extracted the 166 

liking rating, position, and size for each item in a trial (see “Methods”). An item’s position was encoded 167 
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by its column and row indices in the square grid (see Fig. 1; with indices increasing from left to right and 168 

top to bottom). All item attributes were centered with respect to their trial mean in the choice set (e.g., a 169 

centered row index of -1 in the choice set size with 9 items represents the row one above the center, 170 

whereas a centered item rating of -1 represents a rating one below the average of all item ratings in that 171 

choice set). For each normalized time bin, we computed a mixed effects logit regression model (see 172 

“Methods”), regressing the probability that an item was looked at onto its attributes.  173 

In general, subjects began their search at the center of the screen (Fig. 3 A-B; as indicated by 174 

regression coefficients close to 0 for the items’ row and column positions in the beginning of a trial), 175 

coinciding with the preceding fixation cross. Subjects then typically transitioned to the top left corner 176 

(Fig. 3 A-B; as indicated by increasingly negative regression coefficients for the items’ row and column 177 

positions in the beginning of a trial) and then moved from top to bottom (Fig. 3 B; as indicated by the 178 

then increasingly positive regression coefficients for the items’ row positions). Over the course of the 179 

trial, subjects generally focused their search more on highly rated (Fig. 3 C) and larger (Fig. 3 D) items, 180 

while the probability that their gaze returned to an item also steadily increased (Fig. 3 E; β = 9.9%, 94% 181 

HDI = [9.2, 10.7] per second, -0.73, 94% HDI = [-0.80, -0.66] per item), as did the durations of these 182 

gazes (Fig. 3 F; β = 14 ms, 94% HDI = [12, 17] per second, -2.9 ms, 94% HDI = [-3.3, -2.5] per item). In 183 

general, the effects of item position and size on the search process decreased over time (Fig. 3 A-B, D). 184 

For exemplar visual search trajectories in each set size condition, see Supplementary Files 1-4. 185 

Overall, the fraction of total trial time that subjects looked at an item was dependent on the liking 186 

rating, size, and position of the item, as well as the number of items contained in the choice set (β = 0.5%, 187 

94% HDI = [0.4, 0.6] per liking rating, 0.02%, 94% HDI = [0.008, 0.03] per percentage increase in size, -188 

0.20%, 94% HDI = [-0.24, -0.15] per row position, -0.044, 94% HDI =[-0.075, -0.007] per column 189 

position, -0.177, 94% HDI = [-0.18, -0.174] per item).  190 

We also tested whether these item attributes influenced subjects’ choice behaviour. However, the 191 

probability of choosing an item did not depend on the size or position of the item, but was solely 192 

dependent on the item’s rating and the set size (β = 3.88, 94% HDI = [3.53, 4.26] per rating, 0.02, 94%  193 
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 194 

Figure 3. Visual search trajectory: A-D: Black lines represent the fixed effects coefficient 195 
estimates (with 94% HDI intervals surrounding them) of a mixed effects logit regression analysis (see 196 
“Methods”) for each normalized trial time bin regressing the probability that an item was looked at onto 197 
its centered attributes (row (A) and column (B) position, liking rating (C), and size (D); see “Methods”). 198 
Subjects generally started their search in the center of the choice screen, coinciding with the fixation 199 
cross, and then transitioned to the top left corner (as indicated by decreasing regression coefficients for 200 
the items’ row (A) and column positions (B)). From there, subjects generally searched from top to bottom 201 
(as indicated by slowly increasing regression coefficients for the items’ row positions (A)), while also 202 
focusing more on items with a high liking rating (C) and a larger size (D). Dashed horizontal lines 203 
indicate a coefficient estimate of 0. E-F: Over the course over a trial, subjects were also more likely to 204 
look at items that they had already seen in the trial (E), while the duration of these returning gazes also 205 
increased (F). See the “Visual Search” section for details on the corresponding statistical analyses. Lines 206 
indicate mean values with standard errors surrounding them. Colors and line styles in E-F represent 207 
choice set size conditions. 208 

 209 

HDI = [-0.015, 0.06] per percentage increase in item size, -0.06, 94% HDI = [-0.12, 0.01] per row, -0.03, 210 

94% HDI = [-0.1, 0.03] per column, -0.24, 94% HDI = [-0.25, -0.23] per item).  211 
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Competing choice models 212 

We consider the following set of decision models, spanning the space between rational choice 213 

and gaze-driven evidence accumulation. 214 

The optimal choice model with zero search costs is based on the framework of rational decision-215 

making (Luce & Raiffa, 1957; Simon, 1955). It assumes that individuals look at all the items of a choice 216 

set and then choose the best seen item with a fixed probability 𝛽, while making a probabilistic choice over 217 

the set of seen items with probability 1-𝛽 following a softmax choice rule based on the items’ values (l): 218 

𝜎! =
"#$(&×(!)

∑ "#$(&×(")"
. 219 

The hard satisficing model assumes that individuals search until they either find an item with 220 

reservation value V or higher, or they have looked at all items (Caplin et al., 2011; Fellows, 2006; 221 

McCall, 1970; Payne, 1976; Schwartz et al, 2002; Simon, 1955, 1956, 1957, 1959; Stüttgen et al, 2012). 222 

In the former case, individuals immediately stop their search and choose the first item that meets the 223 

reservation value. Crucially, the reservation value can vary across individuals and set-size conditions. In 224 

the latter case, individuals make a probabilistic choice over the set of seen items, as in the optimal choice 225 

model.  226 

Based on the findings by Reutskaja and colleagues (2011), we also considered a probabilistic 227 

version of satisficing, which combines elements from the optimal choice and hard satisficing models. 228 

Specifically, the probabilistic satisficing model (PSM) assumes that the probability q(t) with which 229 

individuals stop their search and make a choice at time point t increases with elapsed time in the trial and 230 

the cached (i.e., highest-seen) item value. Once the search ends, individuals make a probabilistic choice 231 

over the set of seen items, as in the other two models (see “Methods”). 232 

 Next, we considered an independent evidence accumulation model (IAM), in which evidence for 233 

an item begins accumulating once the item is looked at (Smith & Vickers 1988). Importantly, each 234 

accumulator evolves independently from the others, based on the subjective value of the represented item. 235 
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Once the accumulated evidence for an alternative reaches a predefined decision threshold, a choice is 236 

made for that alternative (much like deciding whether the item satisfies a reservation value) (see 237 

“Methods”). 238 

In line with many empirical findings (e.g., Krajbich et al., 2010, 2011; Lopez-Persem, et al., 239 

2017; Tavares et al., 2017; Smith & Krajbich 2019; Thomas et al., 2019), we also considered a relative 240 

evidence accumulation model (as captured by the gaze-weighted linear accumulator model (GLAM); 241 

Thomas et al., 2019; Molter, Thomas, Heekeren & Mohr 2019), which assumes that individuals 242 

accumulate and compare noisy evidence in favor of each item relative to the others. As with the 243 

independent accumulation model, a choice is made as soon as the accumulated relative evidence for an 244 

item reaches a predetermined decision threshold (see “Methods”).  245 

We further considered two different accounts of gaze in the decision process. The passive account 246 

of gaze assumes that gaze allocation solely determines the set of items that are being considered; an item 247 

is only considered once it is looked at. In contrast, the active account of gaze assumes that gaze influences 248 

the subjective value of an item in the decision process, thereby generating higher choice probabilities for 249 

items that are looked at longer. In the PSM, the subjective value of each item increases with gaze time. 250 

Similarly, in the accumulator models, the accumulation rate for an item (indicating subjective value) 251 

increases when it is being looked at. 252 

Recent empirical findings indicate two distinct mechanisms through which gaze might actively 253 

influence these decision processes: multiplicative effects (Krajbich et al., 2010, 2011; Lopez-Persem, et 254 

al., 2017; Tavares et al., 2017; Smith & Krajbich 2019; Thomas et al., 2019) and additive effects 255 

(Cavanagh et al., 2014; Westbrook et al. 2020). Multiplicative effects discount the subjective values of 256 

unattended items (by multiplying them with 𝛾; 0 ≤ 𝛾 ≤ 1), while additive effects add a constant boost 257 

(𝜁; 0 ≤ 𝜁 ≤ 10) to the subjective value of the attended item. Thus, multiplicative effects are proportional 258 

to the values of the items, while additive effects are constant for all items. We allow for both of these 259 

mechanisms in the modeling of the active influence of gaze on the decision process (see “Methods”).  260 
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Qualitative model comparison 261 

 262 

Figure 4. Choice psychometrics for each choice set size. A: The subjects were very likely to 263 
choose one of the highest-rated (i.e., best) items that they looked in all choice set sizes. B-C: The fraction 264 
of items of a choice set that subjects looked at in a trial decreased with choice set size (B), while subjects’ 265 
mean RTs increased (C). D: Subjects chose the item that they looked at last in a trial about half the time. 266 
E: Subjects generally exhibited a positive association of gaze allocation and choice behaviour (as 267 
indicated by the gaze influence measure, describing the mean increase in choice probability for an item 268 
that is looked at longer than the others, after correcting for the influence of item value on choice 269 
probability; for details on this measure, see “Qualitative model comparison”). F: Associations of the 270 
behavioural measures shown in panels A - E (as indicated by Spearman’s rank correlation due to non-271 
normal distributions of pooled subject means). Correlations are computed by the use of the pooled subject 272 
means across the choice set size conditions. Correlations with P-values smaller than 0.01 (Bonferroni 273 
corrected for multiple comparisons: 0.1/10) are printed in bold font. For a detailed overview of the 274 
associations of the behavioural measures, see Figure 4-figure supplement 1. See the “Qualitative model 275 
comparison” section for the corresponding statistical analyses. For a detailed overview of the associations 276 
between the behavioural choice measures and individuals’ visual search, see Figure 4-figure supplement 277 
2. Different colors in A-E represent the choice set size conditions. Violin plots show a kernel density 278 
estimate of the distribution of subject means with boxplots inside of them. 279 

 280 

First, we probed the assumptions of the optimal choice model with zero search costs, which 281 

predicts that subjects first look at all the items in a choice and then choose the highest-rated item at a 282 

fixed rate. Conditional on the set of looked-at items, subjects chose the highest-rated item at a very 283 

consistent rate across set sizes (Fig. 4 A; β = 0.05%, 94% HDI = [-0.04,0.14] per item), with an overall 284 
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average of 84%. However, subjects did not look at all food items in a given trial (Fig. 4 B), while the 285 

fraction of items in a choice set that subjects looked at decreased across set sizes (Fig. 4 B; β = -1.5%, 286 

94% HDI = [-1.6, -1.4] per item) and their RTs increased (Fig. 4 C; β = 85 ms, 94% HDI = [67, 102] per 287 

item). This immediately ruled out a strict interpretation of the optimal choice model, as subjects did not 288 

look at all items before making a choice.  289 

Next, we tested the assumptions of the hard satisficing model, which predicts that subjects should 290 

stop their search and make a choice as soon as they find an item that meets their acceptance threshold. 291 

Accordingly, the last item that subjects look at should be the one that they choose (unless they look at 292 

every item). However, across choice set sizes, subjects only chose the last item that they looked at in 293 

44.5% of the trials (Fig. 4 D; β = 0.13%, 94% HDI = [-0.001, 0.26] per item). Even within the trials where 294 

subjects did not look at every item, the probability that they chose the last seen item was on average only 295 

44.1%.  296 

The PSM, on the other hand, predicts that the probability with which subjects stop their search 297 

and make a choice increases with elapsed time and cached value (i.e., the highest-rated item seen so far in 298 

a trial). We found that both had positive effects on subjects’ stopping probability, in addition to a negative 299 

effect of choice set size (β = 2.7%, 94% HDI = [2.0, 3.3] per cached value, 2.26%, 94% HDI = [1.69, 300 

2.80] per second, -0.22%, 94% HDI = [-0.24, -0.20] per item). Subjects’ behaviour was therefore 301 

qualitatively in line with the basic assumptions of the PSM. Note that this finding does not allow us to 302 

discriminate between the PSM and evidence accumulation models, because both make very similar 303 

qualitative predictions about the relationship between stopping probability, time, and item value. 304 

Lastly, we probed individuals’ behavioural association of gaze allocation and choice. To this end, 305 

we utilized a previously proposed measure of gaze influence (Krajbich et al, 2010, 2011; Thomas et al., 306 

2019): First, we regressed a choice variable (1 if the item was chosen, 0 otherwise) on the relative liking 307 

rating of each item in the choice set (the difference between the item’s rating and the mean rating of all 308 

other items in that set) as well as the mean and range of the other items’ liking ratings. This model 309 

estimates the probability of choosing each of the items based purely on the items’ liking ratings. We then 310 
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subtracted the resulting estimated choice probability for each item in each trial from the empirically 311 

observed choice for this item. Finally, we aggregated the resulting residual choice probabilities for all 312 

positive and negative cumulative gaze advantages (describing whether an item was looked at longer than 313 

the others over the course of the trial or not) and computed the difference between the two. 314 

We found that all subjects exhibited positive values on this measure in all set sizes (Fig. 4 E; with 315 

values ranging from 1.7% to 75%) and that it increased with choice set size (Fig. 4 E; β = 0.26%, 94% 316 

HDI = [0.15, 0.39] per item), indicating an overall positive association between gaze allocation and 317 

choice. In general, a subject’s probability of choosing an item increased with the item’s cumulative gaze 318 

advantage (defined as the difference between the item’s cumulative gaze and the maximum cumulative 319 

gaze of all other items in a choice set) and the item’s relative rating, while it decreased with the range of 320 

the ratings of the other items in a choice set and choice set size (β = 0.46%, 94% HDI = [0.4, 0.5] per 321 

percentage increase in gaze advantage, 3.6%, 94% HDI = [3.2, 4.0] per unit increase in relative rating, -322 

2.8%, 94% HDI = [-3.1, -2.4] per unit increase in the range of ratings of the other items, -0.16, 94% HDI 323 

= [-0.18, -0.14] per item). 324 

To further probe the assumption of gaze-driven evidence accumulation, we performed three tests: 325 

According to the framework of gaze-driven evidence accumulation, subjects who exhibit a stronger 326 

association between gaze and choice should generally exhibit a lower probability of choosing the highest-327 

rated item from a choice set (for a detailed discussion on this finding, see Thomas et al., 2019). For these 328 

subjects, the gaze bias mechanism can bias the decision process towards items that have a lower value but 329 

were looked at longer. In line with this prediction, we found that probability of choosing the highest-rated 330 

seen item was negatively correlated with the gaze influence measure (β = -0.22%, 94% HDI = [-0.36, -331 

0.08] per percentage increase in gaze influence; the mixed effects regression included a random slope and 332 

intercept for each set size).  333 

Second, subjects who have a stronger association between gaze and choice should also be more 334 

likely to choose the last-seen item, as evidence for the looked-at item is accumulated at a generally higher 335 

rate. In line with this prediction, subjects with a stronger relation between gaze and choice were generally 336 



 
 
MECHANISMS OF MANY-ALTERNATIVE CHOICE         16 

 

also more likely to choose the item that they looked at last (β = 1.1%, 94% HDI = [0.9, 1.3] per 337 

percentage increase in gaze influence; the mixed effects regression included a random slope and intercept 338 

for each set size). 339 

Last, subjects who exhibit a positive association between gaze and choice should be more likely 340 

to choose an item when it receives longer individual gazes. In line with previous work (e.g., Krajbich et 341 

al., 2010, 2011), we investigated this by studying the probability of choosing the first-seen item as a 342 

function of the first gaze duration. Overall, this relationship was positive (as was the influence of the 343 

item’s rating), while decreasing with choice set size (β = 17.81%, 94% HDI = [13.72, 22.22] per second, 344 

6.0%, 94% HDI = [5.5, 6.6] per rating, -0.27%, 94% HDI = [-0.32, -0.22] per item).  345 
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Relation of visual search and choice behaviour 346 

To better understand the relationship between visual search and choice behavior, we also studied 347 

the association of the influence of an item’s size, rating, and position on gaze allocation with the metrics 348 

of choice behavior reported in Fig. 4 (namely, mean RT, fraction of looked-at items, probability of 349 

choosing the highest-rated seen item, and gaze influence on choice) (see Figure 4-figure supplement 2). 350 

To quantify the influence of the item attributes on gaze allocation, we ran a regression for each subject of 351 

cumulative gaze (defined as the fraction of trial time that the subject looked at an item; scaled 0 - 100 %) 352 

onto the four item attributes (row, column, size, and rating) and choice set size, resulting in one 353 

coefficient estimate (βgaze) for the influence of each of the item attributes and choice set size on 354 

cumulative gaze. 355 

Subjects with a stronger influence of rating on gaze allocation generally looked at fewer items (β 356 

= -17%, 94% HPI = [-31, -4] per unit increase in βgaze(rating); Figure 4-figure supplement 2 H), were 357 

more likely to choose the highest-rated seen item (β = 14%, 94% HDI = [4, 23] per unit increase in 358 

βgaze(rating); Figure 4-figure supplement 2 P), and were more likely to choose the last seen item (β = 41%, 359 

94% HDI = [20, 63] per unit increase in βgaze(rating); Figure 4-figure supplement 2 T). Subjects with a 360 

stronger influence of item size on gaze allocation generally looked at fewer items (β = -114%, 94% HDI = 361 

[-217, -8] per unit increase in βgaze(size); Figure 4-figure supplement 2 G), exhibited shorter RTs (β = -18 362 

s, 94% HDI = [-33, -4] per unit increase in βgaze(size); Figure 4-figure supplement 2 K), and were less 363 

likely to choose the last seen item (β = -196%, 94% HDI = [-359, -40] per unit increase in βgaze(size); 364 

Figure 4-figure supplement 2 S). Lastly, subjects with a stronger influence of column number (horizontal 365 

location) on gaze allocation generally exhibited longer RTs (β = 3.9 s, 94% HDI = [0.1, 7.8] per unit 366 

increase in βgaze(column); Figure 4-figure supplement 2 J). We did not find any other statistically 367 

meaningful associations between visual search and choice metrics (see Figure 4-figure supplement 2).  368 
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Quantitative model comparison 369 

 370 
Figure 5. Relative model fit. A-D: Individual WAIC values for the probabilistic satisficing 371 

model (PSM), independent evidence accumulation model (IAM), and gaze-weighted linear accumulator 372 
model (GLAM) for each set size. Model variants with an active influence of gaze are marked with an 373 
additional ”+”. The WAIC is based on the log-score of the expected pointwise predictive density such that 374 
larger values in WAIC indicate better model fit. Violin plots show a kernel density estimate of the 375 
distribution of individual values with boxplots inside of them. E-H: Number of subjects for each set size 376 
that were best described by each of the model variants. For an overview of the distribution of individual 377 
model parameter estimates, see Figure 5-figure supplement 1 and Supplementary Files 5-7. For an 378 
overview of the results of a model recovery of the three model types, see Figure 5-figure supplement 2. 379 
Colors indicate choice set sizes. 380 

 381 
Taken together, our findings have shown that subjects’ choice behaviour in MAFC does not 382 

match the assumptions of optimal choice or hard satisficing, while it qualitatively matches the 383 

assumptions of probabilistic satisficing and gaze-driven evidence accumulation. To further discriminate 384 

between the evidence accumulation and probabilistic satisficing models, we fitted them to each subject’s 385 

choice and RT data for each set size (see “Methods”; for an overview of the parameter estimates, see 386 

Figure 5-figure supplement 1and Supplementary Files 5-7). and compared their fit by means of the 387 

Widely Applicable Information Criterion (WAIC; Vehtari, Gelman, & Gabry, 2017). Importantly, we 388 

tested two variants of each of these models, one with a passive account of gaze in which gaze allocation  389 



 
 
MECHANISMS OF MANY-ALTERNATIVE CHOICE         19 

 

 390 

Figure 6. Absolute model fit. Predictions of mean RT (A-C), probability of choosing the highest-391 
rated (i.e., best) seen item (D-F), and gaze influence on choice probability (G-I; for details on this 392 
measure, see “Qualitative model comparison”) by the active-gaze variants of the probabilistic satisficing 393 
model (PSM+; A, G, D), independent evidence accumulation model (IAM+; B, E, H), and gaze-weighted 394 
linear accumulator model (GLAM+; C, F, I). A-C: The PSM+ and GLAM+ accurately recover mean RT, 395 
which the IAM+ accurately but imprecisely recovers. D-F: The PSM+ provides the overall best account 396 
of choice accuracy, followed by the GLAM+, and IAM+. G-I: The PSM+ and IAM+ clearly 397 
underestimate strong influences of gaze on choice; the GLAM+ provides the best account of this 398 
association and only slightly underestimates strong influences of gaze on choice. Gray lines indicate 399 
mixed-effects regression fits of the model predictions (including a random intercept and slope for each set 400 
size) and black diagonal lines represent ideal model fit. Model predictions are simulated using parameter 401 
estimates obtained from individual model fits (for details on the fitting and simulation procedures, see 402 
“Methods”). See the “Quantitative model comparison” section for the corresponding statistical analyses. 403 
Colors/shapes represent different set sizes, while points indicate individual subjects. 404 
 405 

solely determines the set of items that are considered in the decision process, and the other with an active 406 

account of gaze in which gaze affects the subjective value of the alternatives. In the active-gaze models 407 
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(as indicated by the addition of a “+” to the model name), we allowed for both multiplicative and additive 408 

effects of gaze on the decision process (see “Methods”). The model variants with a passive and active 409 

account of gaze were identical, other than for these two influences of gaze on subjective value. Note that 410 

all three model types can be recovered to a satisfying degree in our data (see Figure 5-figure supplement 411 

2). 412 

According to the WAIC, the choice behaviour of the majority of subjects in all set size conditions 413 

was best described by the PSM+ (Fig. 5; 39% (19/49), 67% (33/49), 47% (23/49), and 51% (25/49) in the 414 

sets with 9, 16, 25, and 36 items respectively). The model that best explained the remaining subjects was 415 

the GLAM+ for 9 and 16 items (Fig. 5; 29% (14/49) and 16% (8/49) subjects respectively), and the IAM+ 416 

for 25 and 36 items (Fig. 5; 22% (11/49) and 24% (12/49) subjects respectively). Overall, the vast 417 

majority of subjects were best captured by the model variants with an active account of gaze (82% 418 

(40/49), 94% (46/49), 90% (44/49), and 86% (42/49) for 9, 16, 25, and 36 items respectively).  419 

To also probe the ability of these models to capture choice behaviour on an absolute level, we 420 

simulated choice and RT data for each subject with the three active-gaze models (Fig. 6; see “Methods”). 421 

We assessed the quality of the simulations by regressing the predicted mean RT, probability of choosing 422 

the highest-rated item, and gaze influence on choice probability onto the observed subject values for each 423 

of these measures, in a linear mixed-effects regression analysis with one random intercept and slope for 424 

each set size (see “Methods”). If a model captures the data well, the resulting fixed effects regression line 425 

should have an intercept of 0 and a slope of 1 (as indicated by the black diagonal lines in Fig. 6). 426 

 The PSM+ and GLAM+ both accurately recovered mean RT (Fig. 6 A, C; intercept = -138 ms, 427 

94% HDI = [-414, 119], β = 1.01 ms, 94% HDI = [0.95, 1.05] per ms increase in observed RT for the 428 

PSM+; intercept = -247 ms, 94% HDI = [-499, 11], β = 0.98 ms, 94% HDI = [0.94, 1.03] per ms increase 429 

in observed RT for the GLAM+), which the IAM+ accurately, but imprecisely, recovered (Fig. 6 B; 430 

intercept = -397 ms, 94% HDI = [-1764, 1331], β = 1.19 ms, 94% HDI = [0.96, 1.43] per ms increase in 431 

observed RT). All three models generally underestimated high probabilities of choosing the highest-rated 432 

item from a choice set (Fig. 6 D-F), while the PSM+ provided the overall most accurate account of this 433 
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metric (Fig. 6 D; intercept = -1.90%, 94% HDI = [-7.64, 3.19], β = 0.85%, 94% HDI = [0.79, 0.91] per 434 

percentage increase in observed probability of choosing the highest-rated item), followed by the GLAM+ 435 

(Fig. 6 E; intercept = 14.55%, 94% HDI = [8.08, 21.21], β = 0.70%, 94% HDI = [0.62, 0.77] per 436 

percentage increase in observed probability of choosing the highest-rated item), and IAM+ (Fig. 6 F; 437 

intercept = 8.95%, 94% HDI = [-2.76, 26.17], β = 0.34%, 94% HDI = [0.21, 0.46] per percentage increase 438 

in observed probability of choosing the highest-rated item).  439 

Turning to the gaze data, the PSM+ and IAM+ both slightly overestimated weak associations 440 

between gaze and choice while clearly underestimating stronger associations between them (Fig. 6 G-H; 441 

intercept = 7.03%, 94% HDI = [4.95, 10.23], β = 0.48%, 94% HDI = [0.38, 0.56] per percentage increase 442 

in observed gaze influence for the PSM+; intercept = 7.03%, 94% HDI = [4.57, 9.37], β = 0.36%, 94% 443 

HDI = [0.29, 0.44] per percentage increase in observed gaze influence for the IAM+). The GLAM+, in 444 

contrast, only slightly underestimated the association between gaze and choice (Fig. 6 I; intercept = -445 

3.01%, 94% HDI = [-5.79, -0.22], β = 0.86%, 94% HDI = [0.76, 0.96] per percentage increase in 446 

observed gaze influence).  447 
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Discussion  448 

The goal of this work was to identify the computational mechanisms underlying choice behaviour 449 

in MAFC, by comparing a set of decision models on choice, RT, and gaze data. In particular, we tested 450 

models of optimal and satisficing choice (Reutskaja et al., 2011; Caplin et al., 2011; Fellows, 2006; 451 

Fellner et al., 2009; McCall, 1970; Payne, 1976; Schwartz et al., 2002; Stüttgen et al., 2012) as well as 452 

relative (Krajbich & Rangel, 2011; Thomas et al., 2019) and independent evidence accumulation (Smith 453 

& Vickers 1988). We further tested two variants of these models, with and without influences of gaze on 454 

subjective value. We found that subjects’ behaviour qualitatively could not be explained by optimal 455 

choice or standard instantiations of satisficing. After incorporating active effects of gaze into a 456 

probabilistic version of satisficing, it explained the data well, outperforming the evidence accumulation 457 

models in fitting choice and RT data. Still, the relative accumulation model provided by far the best fit to 458 

the observed association between gaze allocation and choice behaviour, which was not explicitly 459 

accounted for in the likelihood-based model comparison. 460 

The active-gaze satisficing model performed comparably well to the relative accumulation model 461 

for the smallest set size (with 9 alternatives), but stood apart for the larger set sizes (16, 25, and 36 462 

alternatives). The relative accumulation model also steadily performed worse compared to the 463 

independent accumulation model as set size increased. Together, these results suggest that relative 464 

evidence accumulation is a less plausible choice mechanism as the number of alternatives increases, at 465 

least in its current formulation. Intuitively this makes sense, since the number of comparisons explodes as 466 

the number of alternatives grows; for 36 alternatives there are up to 630 potential comparisons. 467 

Meanwhile, the number of decision processes in the independent accumulator model only grows linearly 468 

with the number of seen alternatives. 469 

One reason why the satisficing model might perform particularly well for large sets, is that in our 470 

experiment there were a limited number of food items (80; see “Methods”). Each item was repeated an 471 

average of 50 times per experiment. Thus, subjects could have learned to search for specific items. In 472 
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practice, this strategy would only be useful in certain scenarios. At your local vending machine, you are 473 

almost guaranteed to encounter one of your favorite snacks; here satisficing would be useful. But at a 474 

foreign vending machine, or a new restaurant, the evidence accumulation framework might be more 475 

useful. Future work is needed to investigate the performance of these models in novel and familiar choice 476 

environments. 477 

These findings are also relevant to the discussion about the direction of causality between 478 

attention and choice. Several papers have argued that subjective value and/or the emerging choice affect 479 

gaze allocation, both in binary choice (Cavanagh et al., 2014; Westbrook et al., 2020) and in multi-480 

alternative choice (Krajbich & Rangel, 2011; Towal et al., 2013; Gluth et al., 2020; Callaway et al., 481 

2020). Other work has argued that gaze drives choice outcomes, using exogenous manipulations of 482 

attention (Armel et al. 2008; Mormann et al. 2012; Parnamets et al. 2015; Tavares et al. 2017; Gwinn et 483 

al,. 2019, c.f. Newell & LePelley, 2018; Ghaffari & Fiedler, 2018). Here, we find support for both 484 

directions of the association of gaze and choice. In contrast to the binary choice setting (Krajbich et al. 485 

2010), we found that the probability that an item was looked at, as well as the duration of a gaze to this 486 

item, increased with the item’s rating, and that this trend also increased over the course of a trial. 487 

Nevertheless, our data also indicates that gaze affects choice above and beyond the values of the items 488 

(Fig. 4 E-F). 489 

In a sense the contrast between binary and multi-alternative choice is not surprising. When 490 

deciding between two alternatives, you are merely trying to compare one to the other. In that case 491 

attending to either alternative is equally useful in reaching the correct decision. However, with many 492 

choice alternatives, it is in your best interest to quickly identify the best alternatives in the choice set and 493 

exclude all other alternatives from further consideration (e.g. Hauser & Wernerfelt, 1990; Payne, 1976; 494 

Reutskaja et al., 2011; Roberts & Lattin, 1991). Given this search and decision process we might expect 495 

that subjects’ choices are more driven by their gaze in the later stages of the decision, when they focus 496 

more on the highly rated items in the choice set, than in the earlier stages of the search, when gaze is 497 

driven by the items’ positions and sizes. Indeed, we found that only the items’ ratings predicted choice 498 
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behaviour, not their positions or sizes. 499 

As in prior work, our findings firmly reject a model of complete search and maximization in 500 

MAFC (Caplin et al., 2011; Pieters & Warlop, 1999; Reutskaja et al., 2011; Simon, 1959; Stüttgen et al., 501 

2012): Subjects do not look at every item and they do not always choose the best item they have seen. 502 

Our data also clearly reject the hard satisficing model: Subjects choose the last item they look at only half 503 

of the time. Additionally, we find that subjects’ choices are strongly dependent on the actual time that 504 

they spent looking at each alternative and can therefore not be fully explained by simply accounting for 505 

the set of examined items. This stands in stark contrast to many models of consumer search and rational 506 

inattention (e.g., Caplin, Dean & Leahy, 2019; Masatlioglu, Nakajima & Ozbay, 2012; Matějka & 507 

McKay, 2015; Sims, 2003), which ascribe a more passive role to visual attention, by viewing it as a filter 508 

that creates consideration sets (by attending only to a subset of the available alternatives) from which the 509 

decision maker then chooses. Our findings indicate that attention takes a much more active role in MAFC 510 

by guiding preference formation within the consideration set, as has been observed with smaller choice 511 

sets (e.g., Armel et al., 2008; Gluth et al., 2020; Krajbich et al., 2010, 2011; Smith & Krajbich, 2019; 512 

Thomas et al., 2019). 513 

In conclusion, we find that models of gaze-weighted subjective value account for relations 514 

between eye-tracking data and choice that other passive-attention models of MAFC cannot. These 515 

findings provide new insight into the mechanisms underlying search and choice behaviour, and 516 

demonstrate the importance of employing choice-process techniques and computational models for 517 

studying decision-making.  518 
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Materials and methods 519 

Experimental design 520 

49 healthy English speakers completed this experiment (17 female; 18-55 yrs, median: 23 yrs). 521 

All subjects were required to have normal or corrected-to-normal vision. Individuals wearing glasses or 522 

hard contact lenses were excluded from this study. Further, individuals were only allowed to participate, 523 

if they self-reportedly (I) fasted at least four hours prior to the experiment, (II) regularly ate the snack 524 

foods that were used in the experiment, (III) neither had any dietary restrictions nor (IV) a history of 525 

eating disorders, and (V) didn’t diet within the last six months prior to the experiment. The sample size 526 

for this experiment was determined based on related empirical research at the time of data collection (e.g., 527 

Berkowitsch et al., 2014; Cavanagh et al., 2014; Krajbich et al., 2010, 2011; Philiastides & Ratcliff, 2013; 528 

Reutskaja et al., 2011; Rodriguez et al., 2014; Towal et al., 2013). Informed consent was obtained from 529 

all subjects in a manner approved by the Human Subjects Internal Review Board (IRB) of the California 530 

Institute of Technology (IRB protocol: “Behavioural, eye-tracking, and psychological studies of simple 531 

decision-making”). Each subject completed the following tasks within a single session: First, they did 532 

some training with the choice task, followed by the choice task (Fig. 1), a liking rating task, and the 533 

choice implementation. 534 

In the choice task (Fig. 1), subjects were instructed to choose the snack food item that they would 535 

like to eat most at the end of the experiment from sets of 9, 16, 25, or 36 alternatives. There was no time 536 

restriction on the choice phase and subjects indicated the time point of choice by pressing the space bar of 537 

a keyboard in front of them. After pressing the space bar, subjects had 3 seconds to indicate their choice 538 

with the mouse cursor (for an overview of the choice indication times, defined as the time difference 539 

between the space bar press and the click on an item image, see Figure 1-figure supplement 1). Subjects 540 

used the same hand to press the space bar and navigate the mouse cursor. If they did not choose in time, 541 
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the choice screen disappeared and the trial was marked invalid and excluded from the analysis as well as 542 

the choice implementation. We further excluded trials from the analysis if subjects either chose an item 543 

that they didn’t look at before pressing the spacebar, or if they clicked on the empty space between item 544 

images. The average number of trials dropped from the analysis was 3 (SE: 0.5) per subject and set size 545 

condition. 546 

The initial training task had the exact same structure as the main choice task and differed only in 547 

the number of trials (5 trials per set size condition) and the stimuli that were used (we used a distinct set 548 

of 36 snack food item images).  549 

In the subsequent rating task, subjects indicated for each of the 80 snack foods, how much they 550 

would like to eat the item at the end of the experiment. Subjects entered their ratings on a 7-point rating 551 

scale, ranging from -3 (not at all) to +3 (very much), with 0 denoting indifference (for an overview of the 552 

liking rating distributions, see Figure 1-figure supplement 2-3).  553 

After the rating task, subjects stayed for another 10 minutes and were asked to eat a single snack 554 

food item, which was selected randomly from one of their choices in the main choice task. In addition to 555 

one snack food item, subjects received a show-up fee of $10 and another $15 if they fully completed the 556 

experiment. 557 

Experimental stimuli 558 

The choice sets of this experiment were composed of 9, 16, 25, or 36 randomly selected snack 559 

food item images (random selection without replacement within a choice set). For each set size condition, 560 

these images were arranged in a square matrix shape, with the same number of images per row and 561 

column (3, 4, 5, or 6). All images were displayed in the same size and resolution (205 x 133 px) and 562 

depicted a single snack food item centered in front of a consistent black background.  563 

During the rating phase single item images were presented one at a time and in their original 564 

resolution (576 x 432 px), again centered in front of a consistent black background (see Fig. 1). Overall, 565 
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we used a set of 80 different snack food items for the choice task and a distinct set of 36 items for the 566 

training. 567 

Eye tracking 568 

Monocular eye tracking data were collected with a remote EyeLink 1000 system (SR Research 569 

Ltd., Mississauga, Ontario, Canada) with a sampling frequency of 500 Hz. Before the start of each trial, 570 

subjects had to fixate a central fixation cross for at least 500 ms to ensure that they began each trial 571 

fixating on the same location (see Fig. 1).  572 

Eye tracking measures were only collected during the choice task and always sampled from the 573 

subject's dominant eye (10 left-dominant subjects). Stimuli were presented on a 19-inch LCD display with 574 

a resolution of 1280 x 1024 px. Subjects had a viewing distance of about 50 cm to the eye tracker and 65 575 

cm to the display. Several precautions were taken to ensure a stable and accurate eye tracking 576 

measurement throughout the experiment, as we presented up to 36 items on a single screen: (I) the eye 577 

tracker was calibrated with a 13-point calibration procedure of the EyeLink system, which also covers the 578 

screen corners, (II) four separate calibrations were run throughout the experiment: once before and after 579 

the training task and twice during the main choice task (after 75 and 150 trials), (III) subjects placed their 580 

head on a chin rest, while we recorded their eye movements.  581 

Fixation data were extracted from the output files obtained by the EyeLink software package (SR 582 

Research Ltd., Mississauga, Ontario, Canada). We used these data to define whether the subject’s gaze 583 

was either within a rectangular region of interest (ROI) surrounding an item (item gaze), somewhere else 584 

on the screen (non-item gaze) or whether the gaze was not recorded at all (missing gaze, e.g., eye blinks). 585 

All non-item and missing gazes occurring before the first and after the last gaze to an item in a trial were 586 

discarded from all gaze analyses. All missing data that occurred between gazes to the same item were 587 

changed to that item and thereby included in the analysis. A gaze pattern of ‘item 1, missing data, item 1’ 588 

would therefore be changed to ‘item 1, item 1, item 1’. Non-item or missing gaze times that occurred 589 
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between gazes to different items, however, were discarded from all gaze analyses.  590 

Item attributes 591 

Liking rating 592 

An item’s liking rating (or value) is defined by the rating that the subject assigned to this item in 593 

the liking rating task (see Fig. 1). 594 

Position 595 

This metric described the position of an item in a choice set and was encoded by two integer 596 

numbers: one indicating the row in which the item was located and the other indicating the respective 597 

column. Row and column indices ranged between 1 and the square root of the set size (as choice sets had 598 

a square shape, with the same number of rows and columns; see Fig. 1). Importantly, indices increased 599 

from left to right and top to bottom. For instance, in a choice set with 9 items, the column indices would 600 

be 1, 2, 3, increasing from left to right, while the row indices would also be 1, 2, 3, but increase from top 601 

to bottom. The item in the top left corner of a screen would therefore have a row and column index of 1, 602 

whereas the item in the top right corner would have a row index of 1 and a column index of 3. 603 

Size 604 

This metric describes the size of an item depiction with respect to the size of its image. In order to 605 

compute this statistic, we made use of the fact that all item images had the exact same absolute size and 606 

resolution. First, we computed the fraction of the item image that was covered by the consistent black 607 

background. Subsequently, we subtracted this number from 1 to get a percentage estimate of how much 608 

image space is covered by the snack food item. As all item images had the same size and resolution, these 609 

percentage estimates are comparable across images. 610 
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Probabilistic satisficing model (PSM) 611 

Our formulation of the probabilistic satisficing model (PSM) is based on a proposal by Reutskaja 612 

et al. (2011) and consists of two distinct components: a probabilistic stopping rule, defining the 613 

probability 𝑞(𝑡) with which the search ends and a choice is made at each time point t (𝛥𝑡 = 1𝑚𝑠), and a 614 

probabilistic choice rule, defining a choice probability 𝜆! for each item i in the choice set. Reutskaja et al. 615 

(2011) defined the stopping probability 𝑞(𝑡) as: 616 

𝑞(𝑡) = 𝑚𝑖𝑛{𝛼 × 𝐶(𝑡) + 𝑣 × 𝑡, 1} with 𝑞(0) = 0, 𝐶(𝑡) > 0, {𝑡, 𝛼, 𝑣} ≥ 0   (1) 617 

Importantly, 𝑞(𝑡) increases linearly with the cached item value 𝐶(𝑡) and the trial time t. Note that 618 

we extend the original formulation of the model by Reutskaja and colleagues (2011) upon an active 619 

influence of gaze on the decision process. Specifically, we defined the cached item value as: 620 

𝐶(𝑡) = 𝑚𝑎𝑥+ @𝑐,(𝑡)B            (2) 621 

𝑐!(𝑡) = 𝑔!(𝑡) × (𝑙! + 𝜁) + E1 − 𝑔!(𝑡)G × 𝛾 × 𝑙!       (3) 622 

Here, 𝑔!(𝑡) represents the fraction of elapsed trial time t that item i was looked at, while 𝛾  623 

(0 ≤ 𝛾 ≤ 1) and 𝜁 (0 ≤ 𝜁 ≤ 10) implement the multiplicative and additive gaze bias effects. While an 624 

item i is looked at, its value 𝑙! (as indicated by the item’s liking rating) is increased by 𝜁, whereas the 625 

value of all other items that are momentarily not looked at is discounted by 𝛾. Note that we set 𝑐!(𝑡) =626 

0	for all items that were not yet looked at by time point t. To further ensure 𝐶(𝑡) > 0 we re-scaled all 627 

liking ratings to a range from 1 to 7. The strength of the influence of 𝐶(𝑡) and t on 𝑞(𝑡) is determined by 628 

the two positive linear weighting parameters 𝛼 and 𝑣. Note that 𝑞(𝑡) is bounded to (0 ≤ 𝑞(𝑡) ≤ 1). To 629 

obtain the passive-gaze variant of the PSM, we set 𝛾 = 1and 𝜁 = 0. 630 

However, 𝑞(𝑡) does not account for the probability that the search has ended at any time point 631 

prior to t. In order to apply and fit the model to RT data, we need to compute the joint probability 𝑓(𝑡) 632 

that the search has not stopped prior to t and the probability that the search ends at time point t. Therefore, 633 

we correct 𝑞(𝑡) for the probability 𝑄(𝑡) that the search has not stopped at any time point prior to t: 634 
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𝑓(𝑡) = 𝑞(𝑡) × 𝑄(𝑡 − 1)            (4)  635 

𝑄(𝑡) = ∏ E1 − 𝑞(𝑡)G-
.              (5) 636 

Once the search has ended, the model makes a probabilistic choice over the set of alternatives J 637 

following a softmax function of their cached values 𝑐!(𝑡) (with scaling parameter 𝜏):  638 

𝜎!(𝑡) =
"#$/&×0!(-)1

∑ "#$# 2&×0"(-)3
            (6) 639 

Lastly, by multiplying the stopping probability 𝑓(𝑡) by 𝜎!(𝑡), we obtain the probability 𝑝!(𝑡) that 640 

item i is chosen at time point t: 641 

𝑝!(𝑡) = 𝑓(𝑡) × 𝜎!(𝑡)            (7) 642 

Independent evidence accumulation model (IAM) 643 

 The independent evidence accumulation (IAM) model assumes that the choices follow an evidence 644 

accumulation process, in which evidence for an item is only accumulated once it was looked at in a trial 645 

and is then independent of all other items in a choice set (much like deciding whether the item satisfies a 646 

reservation value) (Smith & Vickers 1988). A choice is determined by the first accumulator that reaches a 647 

common pre-defined decision boundary b, which we set to 1. Specifically, the evidence accumulation 648 

process is guided by a set of decision signals 𝐷!  for each item i that was looked at in the trial: 649 

 𝐷! = 𝑔! × (𝑙! + 𝜁) + (1 − 𝑔!) × 𝛾 × 𝑙!         (8) 650 

 Here, 𝑙! indicates the item’s liking rating, while 𝑔! indicates the fraction of the remaining trial time 651 

(after time point t0i at which item i was first looked at in the trial) that the individual spent looking at item 652 

i. As in the PSM (see eq. 3), 𝛾 (0 ≤ 𝑞(𝑡) ≤ 1) and 𝜁 (0 ≤ 𝜁 ≤ 10) implement the multiplicative and 653 

additive gaze bias effects. To obtain the passive-gaze variant of the IAM, we set 𝛾 = 1and 𝜁 = 0. 654 

 At each time step t (with ∆t = 1ms), the amount of accumulated evidence 𝐸! is determined by a 655 

velocity parameter 𝑣, the item’s decision signal 𝐷!  , and zero-centered normally distributed noise with 656 

standard deviation 𝜎: 657 
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 𝐸!(𝑡) = 𝐸!(𝑡 − 1) + 𝑣 × 𝐷! +𝑁(0, 𝜎4) with 𝐸!(𝑡 < 𝑡0!) = 0      (9) 658 

As for the PSM, we re-scaled all liking ratings to a range from 1 to 7 to ensure 𝐷! > 0. Note that 659 

we set 𝐸!(𝑡 < 𝑡0!) = 0	for all items that were not yet looked at by time point t. 660 

Lastly, the first passage time density 𝑓!(𝑡) of a single linear stochastic accumulator 𝐸!(𝑡) at time 661 

point t is given by the Inverse Gaussian Distribution (Wald, 2004): 662 

𝑓!(𝑡) = R 5
4×6×-$

S
. 4⁄

× 𝑒𝑥𝑝 U85×(-89)
%

4×9%×-
V with  𝜇 = :

;×<!
 and  𝜆 = :%

=%
.    (10) 663 

With a cumulative distribution function 𝐹!(𝑡) of: 664 

𝐹!(𝑡) = 𝛷 × Z[5
-
× @-

9
− 1B\ + 𝑒𝑥𝑝 @4×5

9
B × 𝛷 × Z−[5

-
× @-

9
+ 1B\,    (11)  665 

where 𝛷 is the standard normal cumulative distribution function. 666 

Yet, 𝑓!(𝑡) does not take into account that there are multiple accumulators in each trial racing 667 

towards the same decision boundary. A choice is made as soon as any of these accumulators reaches the 668 

boundary. Therefore, we correct 𝑓!(𝑡) for the probability that any other accumulator i crosses the 669 

boundary first, to obtain the joint probability 𝑝!(𝑡) of an accumulator reaching the boundary at the 670 

empirically observed response time RT, and no other accumulator j having reached it prior to RT: 671 

𝑝!(𝑅𝑇) = 𝑓!(𝑅𝑇 − 𝑡0!) × ∏ @1 − 𝐹,E𝑅𝑇 − 𝑡0,GB,>+        (12)   672 

Gaze-weighted linear accumulator model (GLAM)  673 

The GLAM (Thomas et al., 2019; Molter et al., 2019) assumes that choices are driven by the 674 

accumulation of noisy evidence in favor of each available choice alternative i. As for the IAM, a choice is 675 

determined by the first accumulator that reaches a common pre-defined decision boundary b (𝑏 = 1). 676 

Particularly, the accumulated evidence 𝐸! in favor of alternative i is defined as a stochastic process that 677 

changes at each point in time t (𝛥𝑡 = 1𝑚𝑠) according to: 678 

𝐸!(𝑡) = 𝐸!(𝑡 − 1) + 𝑣 × 𝐷! +𝑁(0, 𝜎4) with 𝐸!(0) = 0      (13) 679 
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𝐸! consists of a drift term 𝐷! and zero-centered normally distributed noise with standard deviation 680 

𝜎. Note that we only included choice alternatives in the decision process that were also looked at in a trial 681 

(by setting 𝐸!(𝑡) = 0 for all other alternatives). The overall speed of the accumulation process is 682 

determined by the velocity parameter 𝑣. The drift term 𝐷! is a function of a set of decision signals for 683 

each item i: an absolute and a relative decision signal. The absolute decision signal implements the 684 

model’s gaze bias mechanism. Importantly, the variant of the GLAM used here extends the gaze bias 685 

mechanism of the original GLAM upon an additive influence of gaze on the decision process (in line with 686 

recent empirical findings; Cavanagh, Wiecki, Kochar & Frank, 2014; Westbrook et al., 2020). The 687 

absolute decision signal can thereby be in two states: An additive state, in which the item’s value 𝑙! (as 688 

indicated by the item’s liking rating) is amplified by a positive constant  𝜁 (0 ≤ 𝜁 ≤ 10) while the item is 689 

looked at, and a multiplicative state while any other item is looked at, where the item value 𝑙! is 690 

discounted by γ (0 ≤ γ ≤ 1). The average absolute decision signal 𝐴! is then given by 691 

𝐴! = 𝑔! × (𝑙! + 𝜁) + (1 − 𝑔!) × 𝛾 × 𝑙!         (14) 692 

 Here, gi describes the fraction of total trial time that the decision maker spends looking at item i. To 693 

obtain the passive-gaze variant of the GLAM, we set 𝛾 = 1and 𝜁 = 0. 694 

 We define the relative decision signal 𝑅! as the difference in the average absolute decision signal 695 

𝐴! of item i and the maximum of all other absolute decision signals J: 696 

𝑅! = 𝐴! −𝑚𝑎𝑥,>+E𝐴,G            (15) 697 

The GLAM further assumes that the decision process is particularly sensitive to small differences 698 

in the relative decision signals 𝑅! which are close to 0 (where the average absolute decision signal 𝐴!   for 699 

an item i is close to the maximum of all other items J). To account for this, the GLAM scales the relative 700 

decision signals 𝑅! by the use of a logistic transform 𝜎with scaling parameter τ:   701 

𝐷! = 𝜎(𝑅!)              (16) 702 

𝜎(𝑥) = .
.?"#$(8&×#)

            (17) 703 

This transform also ensures that the drift terms 𝐷! of the stochastic race are positive, whereas the 704 
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relative decision signals 𝑅! can be positive and negative (eq. 15). 705 

Similar to the independent evidence accumulation model (see eqs. 10-12), we can obtain the joint 706 

probability 𝑝!(𝑡) of an accumulator reaching the boundary at time t, and no other accumulator j having 707 

reached it prior to t, as follows: 708 

 𝑝!(𝑡) = 𝑓!(𝑡) × ∏ @1 − 𝐹,(𝑡)B,>+           (18)  709 

Note that f(t) and F(t) follow eq. 10-11. 710 

Parameter estimation 711 

All model parameters were estimated separately for each individual in each set size condition. 712 

The individual models were implemented in the Python library PyMC3.9.1 (Salvatier, Wiecki & 713 

Fonnesbeck, 2016) and fitted using Markov Chain Monte Carlo Metropolis sampling. For each model, we 714 

first sampled 5000 tuning samples that were then discarded (burn-in), before drawing another 5000 715 

additional posterior samples that we used to estimate the model parameters. Each parameter trace was 716 

checked for convergence by means of the Gelman–Rubin statistic (a𝑅 − 1a < 0.05) as well as the mean 717 

number of effective samples (> 100). If a trace did not converge, we re-sampled the model and increased 718 

the number of burn-in samples by 5000 until convergence was achieved. Note that the IAM+ did not 719 

converge for three, one, one, and one subjects in the choice set sizes with 9, 16, 25, and 36 items 720 

respectively after 50 re-sampling attempts. Similarly, the IAM did not converge for one subject in the 721 

choice set size with 25 items. For these subjects, we continued all analyses with the model that was 722 

sampled last. We defined all model parameter estimates as maximum a posteriori estimates (MAP) of the 723 

resulting posterior traces (for an overview, see Figure 5-figure supplement 1 and Supplementary Files 5-724 

7). 725 

Probabilistic satisficing model 726 

 The probabilistic satisficing model has five parameters, which determine the additive (𝜁) and 727 
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multiplicative (𝛾) gaze bias effects on its cached value, the influence of cached value (𝛼) and time (𝑣) on 728 

its stopping probability, and the sensitivity of its softmax choice rule (𝜏). We placed uninformative, 729 

uniform priors on all model parameters: 730 

l 𝜁 ~ Uniform(0, 10) 731 

l 𝛾 ~ Uniform(0, 1) 732 

l 𝑣 ~ Uniform(0, 0.001) 733 

l 𝛼 ~ Uniform(0, 0.001) 734 

l 𝜏 ~ Uniform(0, 10) 735 

Independent evidence accumulation model 736 

 The independent evidence accumulation model has four parameters, which determine its general 737 

accumulation speed (𝑣) and noise (𝜎) and its additive (𝜁) and multiplicative (𝛾) gaze bias effects. We 738 

placed uninformative, uniform priors on all model parameters: 739 

l 𝑣 ~ Uniform(1e-7, 0.005) 740 

l 𝜎 ~ Uniform(1e-7, 0.05) 741 

l 𝜁 ~ Uniform(0, 10) 742 

l 𝛾 ~ Uniform(0, 1) 743 

Gaze-weighted linear accumulator model 744 

 The GLAM variant used here has five parameters, which determine its general accumulation speed 745 

(𝑣) and noise (𝜎), its additive (𝜁) and multiplicative (𝛾) gaze bias, and the sensitivity of the scaling of the 746 

relative decision signals (τ). We placed uninformative, uniform priors between on all model parameters: 747 

l 𝑣 ~ Uniform(1e-7, 0.005) 748 

l 𝜎 ~ Uniform(1e-7, 0.05) 749 

l 𝜁 ~ Uniform(0, 10) 750 
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l 𝛾 ~ Uniform(0, 1) 751 

l 𝜏 ~ Uniform(0, 10) 752 

Error likelihood model 753 

In line with existing DDM toolboxes (e.g., Wiecki, Sofer & Frank, 2013), we include spurious 754 

trials at a fixed rate of 5% in all model estimation procedures (see eq. 20). We model these spurious trials 755 

with a subject-specific uniform likelihood distribution us. This likelihood describes the probability of a 756 

random choice for any of the N available items at a random time point in the range of a subject’s 757 

empirically observed response times rts (Ratcliff & Tuerlinckx, 2002): 758 

𝑢@(𝑡) =
.

A×/BC#(D-&)8B!E(D-&)1
          (19) 759 

The resulting likelihood 𝑙@,!(𝑡) of subject s choosing item i at time t for all estimated models was 760 

thereby given by: 761 

𝑙@,!(𝑡) = 0.95 × 𝑝!(𝑡) + 0.05 × 𝑢@(𝑡)         (20) 762 

Model simulations 763 

We repeated the data of each trial 50 times during the simulation and simulated a choice and RT 764 

for each trial with each model at a rate of 95%, while we simulated random choices and RTs according to 765 

eq. 19 at a rate of 5%. We defined the model parameter estimates that were used for the simulation as the 766 

maximum a posteriori estimates (MAP) of the posterior traces of the individual subject models (see 767 

Figure 5-figure supplement 1 and Supplementary Files 5-7). 768 

Probabilistic satisficing model 769 

For each trial repetition, we simulated a choice and response time according to eqs. 1 and 6. 770 
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Independent evidence accumulation model 771 

For each trial repetition, we simulated a choice and RT by first drawing a first passage time 772 

(𝐹𝑃𝑇!) for each item i in a choice set according to eq. 10. To account for the gaze-dependent onsets of 773 

evidence accumulation, we then added the empirically observed time at which the item was first looked at 774 

in a trial (t0i, see eqs. 9, 12) to the drawn 𝐹𝑃𝑇! of each item. The item with the shortest 𝐹𝑃𝑇! + 𝑡0! then 775 

determined the RT and choice.  776 

GLAM 777 

For each trial repetition, we simulated a choice and response time by first drawing a first passage 778 

time (𝐹𝑃𝑇!) for each item in a choice set according to eq. 10. The item with the shortest 𝐹𝑃𝑇! then 779 

determined the RT and choice.  780 

Mixed-effects modelling 781 

All mixed effects models were fitted in a Bayesian hierarchical framework by the use of the 782 

Bayesian Model-Building Interface (bambi 0.2.0; Yarkoni & Westfall, 2016). Bambi automatically 783 

generates weakly informative priors for all model variables. We fitted all models using the Markov Chain 784 

Monte Carlo No-U-Turn-Sampler (NUTS; Hoffman & Gelman, 2014), by drawing 2000 samples from 785 

the posterior, after a minimum of 500 burn-in samples. In addition to the reported fixed effect estimates, 786 

all models included random intercepts for each subject, as well as random subject-slopes for each model 787 

coefficient. The posterior traces of all reported fixed effects estimates were checked for convergence by 788 

means of the Gelman–Rubin statistic (a𝑅 − 1a < 0.05). If a fixed effect posterior trace did not converge, 789 

the model was re-sampled and the number of burn-in samples increased by 2000 until convergence was 790 

achieved. 791 
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Software 792 

All data analyses were performed in Python 3.6.8 (Python Software Foundation), by the use of 793 

the SciPy 1.3.1, (Virtanen et al., 2019), NumPy 1.17.3 (Oliphant, 2006), Matplotlib 3.1.1 (Hunter, 2017), 794 

Pandas 0.25.2 (McKinney, 2010), Theano 1.0.4 (Theano Development Team, 2016), bambi 0.2.0 795 

(Yarkoni & Westfall, 2016), ArviZ 0.9.0 (Kumar, Carroll, Hartikainen & Martin, 2019), and PyMC3.9.1 796 

(Salvatier, Wiecki, & Fonnesbeck, 2016) packages. For the computation of stimulus metrics, we further 797 

utilized the Pillow 5.0 (http://pillow.readthedocs.io) Python package. The experiment was written in 798 

MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States), using the Psychophysics 799 

Toolbox extensions (Brainard, 1997). 800 

Availability of data, model and analysis code 801 

 All experiment stimuli, data and analysis scripts are available at: github.com/athms/many-item-802 
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Supplementary files 812 

1. Supplementary Files 1-4: Exemplar visual search trajectories for choice sets with 9 (File 1), 16 813 

(File 2), 25 (File 3), and 36 (File 4) alternatives. Each video shows the visual search trajectory 814 

over the choice screen for one exemplary trial of each choice set size condition. The current gaze 815 

position is indicated by a white box, while the choice is indicated by a red box. For better 816 

visibility, gaze durations have been increased by a factor of two. 817 

2. Supplementary File 5: Mean parameter estimates of the probabilistic satisficing model with active 818 

(PSM+) and passive (PSM) account of gaze in the decision process for each choice set size. The 819 

probabilistic satisficing model has five parameters, determining the additive (𝜁) and 820 

multiplicative (𝛾) gaze bias effects on its cached value, the influence of cached value (𝛼) and time 821 

(𝑣) on its stopping probability, and the sensitivity of its softmax choice rule (𝜏). Note that the 822 

high mean value of 𝛼 for the active-gaze variant in the choice set size with 16 items is driven by 823 

one outlier (see Figure 5-figure supplement 1 D). 824 

3. Supplementary File 6: Mean parameter estimates of the independent evidence accumulation 825 

model with active (IAM+) and passive (IAM) account of gaze in the decision process for each 826 

choice set size. The independent evidence accumulation model has four parameters, determining 827 

its additive (𝜁) and multiplicative (𝛾) gaze bias effects and its general accumulation speed (𝑣) and 828 

noise (𝜎). 829 

4. Supplementary File 7: Mean parameter estimates for the gaze-weighted linear accumulator model 830 

with active (GLAM+) and passive (GLAM) account of gaze in the decision process for each 831 

choice set size. The GLAM variant used in this work has five parameters, determining its additive 832 

(𝜁) and multiplicative (𝛾) gaze bias, its general accumulation speed (𝑣) and noise (𝜎) as well as 833 

the sensitivity of the scaling of the relative decision signals (τ). 834 
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Figure supplements 1125 

 1126 

Figure 1-figure supplement 1. Choice indication times for each choice set size as indicated by 1127 

the time difference between space bar press (indicating RT) and subsequent mouse click on a snack food 1128 

item image. For details on the experiment paradigm, see the “Methods” section of the main text. Choice 1129 

indication times generally increased with the Euclidean distance of the chosen item from the screen center 1130 

(where the mouse cursor appeared) as well as choice set size (intercept = 1256 ms, 94% HDI = [1178, 1131 

1337], β = 0.59 ms, 94% HDI = [0.52, 0.66] per pixel increase in Euclidean distance, 2.3 ms, 94% HDI = [1.6, 1132 

3] per item). Note that the intercept estimate of 1256 ms describes the average time that it took subjects to 1133 

move their hand from the space bar to the computer mouse and added time resulting from movement noise in 1134 

the mouse trajectory.  1135 



 
 
MECHANISMS OF MANY-ALTERNATIVE CHOICE         52 

 

 1136 

Figure 1-figure supplement 2. Liking rating distribution of each subject. 1137 
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 1138 

Figure 1-figure supplement 3. Absolute (A-D) and relative (E-H; defined as the difference 1139 

between an item’s rating and the mean rating of the other items in a choice set) liking rating distributions 1140 

for each choice set size.  1141 
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 1142 

Figure 4-figure supplement 1. Detailed view of the associations of the choice psychometrics 1143 

presented in Fig. 4 F of the main text. Scatter points indicate pooled subject means across the choice set 1144 

sizes. Due to non-normal distributions of the pooled subject means Spearman’s rank correlation 1145 

coefficients (r) with corresponding P-values are reported for each association.  1146 
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 1147 

Figure 4-figure supplement 2. Association between the choice psychometrics presented in Fig. 4 1148 

A-E of the main text and a set of measures describing individuals’ visual search behaviour. To quantify 1149 

individuals’ visual search, we computed a mixed effects regression model for each individual in the data, 1150 

estimating how much the individual’s allocation of cumulative gaze to an item (measured as the fraction 1151 

of trial time that the item was looked at) is influenced by the item’s attributes (namely, the item’s row- 1152 

and column-position, size, and liking rating; for details on the item attributes, see the “Methods” section 1153 

of the main text) as well as the choice set size, resulting in one coefficient estimate (βgaze) for the 1154 

influence of each item attribute and choice set size on the distribution of cumulative gaze. We then 1155 
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studied the relationship between the resulting regression estimate (βgaze ; A-D) for each of the item 1156 

attributes and each individuals’ pooled mean on the five behavioral choice metrics presented in Fig. 4 A-1157 

E of the main text (namely, the mean fraction of items looked at in a trial, mean RT, the probability of 1158 

choosing the highest-rated seen item from a choice set, the probability of looking at the chosen item last, 1159 

and the gaze influence measure). Pearson’s r correlation coefficient with P-value is indicated for each 1160 

association. If the assumption of normality is violated, Spearman’s rank correlation coefficient (r) with P-1161 

value is reported instead. Brighter yellow colors indicate smaller P-values. Scatter points indicate pooled 1162 

subject means across the choice set sizes.  1163 
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 1164 

Figure 5-figure supplement 1. Parameter estimates from the in-sample fits of the probabilistic 1165 

satisficing model (active gaze variant: A-E, passive gaze variant: F-H), GLAM (active gaze variant: I-M, 1166 

passive gaze variant: N-P), and independent evidence accumulation model (active gaze variant: Q-T, 1167 

passive gaze variant: U-V). Colors indicate choice set sizes. Vertical lines on the x-axis indicate the mean 1168 

parameter estimate in each set size. For a detailed overview of the mean parameter estimates per model 1169 

and choice set size, see Supplementary Materials 5-7.  1170 
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 1171 

Figure 5-figure supplement 2. Model recovery. The goal of this analysis was to determine 1172 

whether the three models with an active account of gaze (PSM+, IAM+, and GLAM+; see the “Methods” 1173 

section of the main text) can be distinguished from one another in our dataset. Testing this is necessary to 1174 

ensure that we can accurately identify the data-generating process. To test this, we selected 10 random 1175 

subjects from our dataset and simulated choice and RT data for each of their 9-item trials (using the best-1176 

fitting individual parameters (see Figure 5-figure supplement 1)). Subsequently, we fitted the three 1177 

models to each simulated dataset and compared their fit by means of the Widely Applicable Information 1178 

Criterion (WAIC; Vehtari et al., 2017) (A-C). The WAIC is based on the log-score of the expected 1179 

pointwise predictive density such that larger values in WAIC indicate better model fit. Each model 1180 

consistently best captured its own predictions (D-F), indicating that the three models can be distinguished 1181 

from one another. For details on the model simulation and fitting procedures, see the “Methods” section 1182 

of the main text. Violin plots show a kernel density estimate of the distribution of individual values with 1183 

boxplots inside of them. 1184 


