96 research outputs found

    Current and Oxygen Variability in the Tropical North East Atlantic

    Get PDF
    The tropical North East Atlantic (TNEA) is characterized by an oxygen minimum zone (OMZ) that is located at intermediate depth (300m – 700m) and latitudinally spreads between the oxygen-rich equatorial Atlantic and the Cape Verde Frontal Zone at about 20°N. Recent studies have shown that local oxygen fluctuations and the associated ventilation of the TNEA OMZ are mainly caused by diapycnal mixing and mesoscale eddies. Zonal currents additionally ventilate the TNEA by advecting oxygen-rich water from the well-ventilated western boundary eastwards. The spatial and temporal variability of these zonal currents is thought to contribute to the oxygen variability in this regime. An intense measurement program along 23°W cutting through the TNEA OMZ has been executed during recent years. Moored observations and repeat ship sections were performed with CTD/O2 (conductivity, temperature, depth, oxygen) and current measurements. Here, we analyze the spatial and temporal variability of the zonal currents in the TNEA at intermediate depths and discuss their respective role for the spatial and temporal oxygen variability as well as the ventilation of the OMZ. Particularly, the observed annual cycle of the North Equatorial Undercurrent (NEUC) at 5°N, which is several cm/s at intermediate depth, causes phase-shifted (zonal velocity leading oxygen) annual oxygen fluctuations in a range of about 10 ”mol/kg. In general, time-varying zonal currents advect oxygen eastwards that is meridionally redistributed by mesoscale eddies. The overall effect of those currents for the ventilation of the OMZ is discussed

    The United States, PMSCs and the state monopoly on violence: Leading the way towards norm change

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Sage.The proliferation of private military and security companies (PMSCs) in Iraq and Afghanistan has raised many questions regarding the use of armed force by private contractors. This article addresses the question of whether the increased acceptance of PMSCs indicates a transformation of the international norm regarding the state monopoly on the legitimate use of armed force. Drawing on theoretical approaches to the analysis of norm change, the article employs four measures to investigate possible changes in the strength and meaning of this norm: modifications in state behaviour, state responses to norm violation, the promulgation of varying interpretations of the norm in national and international laws and regulations, and changes in norm discourse. Based on an analysis of empirical evidence from the United States of America and its allies, the article concludes that these measures suggest that the USA is leading the way towards a transformation of the international norm of the state monopoly on violence, involving a revised meaning. Although this understanding has not yet been formally implemented in international law, it has allowed a growing number of countries to tolerate, accept or legalize the use of armed force by PMSCs in the international arena.The Alexander von Humboldt Foundation and the Peace Research Institute Frankfurt

    Seismic Oceanography in the Tyrrhenian Sea – Thermohaline Staircases, Eddies and Internal Waves

    Get PDF
    We use seismic oceanography to document and analyze oceanic thermohaline finestructure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April-May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in-situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline finestructure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface meso-scale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse towards the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double-diffusion prevail. Synopsis We studied the internal temperature and salinity structure of the Tyrrhenian Sea (Mediterranean) using the multichannel seismic reflection method (the same used in the hydrocarbon industry). Low frequency sound (seismic) waves are produced at the surface with an explosive air source and recorded by a towed cable containing hydrophones (underwater microphones). The data are processed to reveal 'stratigraphy' that result from contrasts in density that are themselves caused by changes in temperature and salinity. In this way we can map ocean circulation in two-dimensions. We also deployed in situ oceanographic probes to measure temperature and salinity in order to corroborate and optimize the processing of the seismic data. We then quantified the internal gravity wave field by tracking the peaks of seismic trace wavelets. Our results show that the interior of the Tyrrhenian Sea is largely isolated from internal waves that are generated by a large cyclonic boundary current that contains waters from the Atlantic ocean and other parts of the Mediterranean. This isolation allows the thermohaline finestructure to form, where small scale vertical mixing processes are at play. Understanding these mixing processes will aid researchers study global ocean circulation and to add constraints that can help improve climate models

    Low oxygen eddies in the eastern tropical North Atlantic: Implications for N2O cycling

    Get PDF
    Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in the Atlantic OMZ are relatively high and low, respectively. This study, however, demonstrates that recently discovered low oxygen eddies in the eastern tropical North Atlantic (ETNA) can produce N2O concentrations much higher (up to 115 nmol L−1) than those previously reported for the Atlantic Ocean, and which are within the range of the highest concentrations found in the open-ocean OMZs of the Pacific and Indian Oceans. N2O isotope and isotopomer signatures, as well as molecular genetic results, also point towards a major shift in the N2O cycling pathway in the core of the low oxygen eddy discussed here, and we report the first evidence for potential N2O cycling via the denitrification pathway in the open Atlantic Ocean. Finally, we consider the implications of low oxygen eddies for bulk, upper water column N2O at the regional scale, and point out the possible need for a reevaluation of how we view N2O cycling in the ETNA

    A dynamic flight model for Slocum gliders and implications for turbulence microstructure measurements

    Get PDF
    The turbulent dissipation rate ɛ is a key parameter to many oceanographic processes. Recently gliders have been increasingly used as a carrier for microstructure sensors. Compared to conventional ship-based methods, glider-based microstructure observations allow for long duration measurements under adverse weather conditions, and at lower costs. The incident water velocity U is an input parameter for the calculation of the dissipation rate. Since U can not be measured using the standard glider sensor setup, the parameter is normally computed from a steady-state glider flight model. As ɛ scales with U2 or U4, depending whether it is computed from temperature or shear microstructure, flight model errors can introduce a significant bias. This study is the first to use measurements of in-situ glider flight, obtained with a profiling Doppler velocity log and an electromagnetic current meter, to test and calibrate a flight model, extended to include inertial terms. Compared to a previously suggested flight model, the calibrated model removes a bias of approximately 1 cm s−1 in the incident water velocity, which translates to roughly a factor of 1.2 in estimates of the dissipation rate. The results further indicate that 90% of the estimates of the dissipation rate from the calibrated model are within a factor of 1.1 and 1.2 for measurements derived from microstructure temperature sensors and shear probes, respectively. We further outline the range of applicability of the flight model

    Corporate Security Responsibility: Towards a Conceptual Framework for a Comparative Research Agenda

    Get PDF
    The political debate about the role of business in armed conflicts has increasingly raised expectations as to governance contributions by private corporations in the fields of conflict prevention, peace-keeping and postconflict peace-building. This political agenda seems far ahead of the research agenda, in which the negative image of business in conflicts, seen as fuelling, prolonging and taking commercial advantage of violent conflicts,still prevails. So far the scientific community has been reluctant to extend the scope of research on ‘corporate social responsibility’ to the area of security in general and to intra-state armed conflicts in particular. As a consequence, there is no basis from which systematic knowledge can be generated about the conditions and the extent to which private corporations can fulfil the role expected of them in the political discourse. The research on positive contributions of private corporations to security amounts to unconnected in-depth case studies of specific corporations in specific conflict settings. Given this state of research, we develop a framework for a comparative research agenda to address the question: Under which circumstances and to what extent can private corporations be expected to contribute to public security

    Climate-Biogeochemistry Interactions in the Tropical Ocean: Data collection and legacy

    Get PDF
    From 2008 through 2019, a comprehensive research project, SFB 754, Climate - Biogeochemistry Interactions in the Tropical Ocean, was funded by the German Research Foundation to investigate the climate-biogeochemistry interactions in the tropical ocean with a particular emphasis on the processes determining the oxygen distribution. During three 4-year long funding phases, a consortium of more than 150 scientists conducted or participated in 34 major research cruises and collected a wealth of physical, biological, chemical, and meteorological data. A common data policy agreed upon at the initiation of the project provided the basis for the open publication of all data. Here we provide an inventory of this unique data set and briefly summarize the various data acquisition and processing methods used

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies
    • 

    corecore