Current and Oxygen Variability in the Tropical North East Atlantic

J. Hahn, P. Brandt, R. J. Greatbatch, G. Krahmann, A. Körtzinger

24.10.2013 TAV-PIRATA Meeting 2013, Venice, Italy

- 1. Motivation
- 2. Data
- 3. Results
 - 3.1 O₂ mooring time series / dominant time scales of O₂ fluctuations
 - 3.2 Seasonal cycle
 - 3.3 Velocity and O₂ fluctuations / O₂ flux
- 4. Summary

3. Results

Oxygen Distribution in the Tropical Atlantic

Analysis of repeated ship sections

sources for O₂ variance?

- stirring by mesoscale eddies / diapycnal mixing
- (zonal) current variability

characteristic mean field (surface and near surface currents)

Brandt et al. (2010)

seasonal cycle of surface currents (shaded regimes: eastward velocity)

Seasonal cycle of oxygen from CTD/O₂ data

Goal I: Identify characteristic time scales of oxygen variability.

Is there pronounced variability at defined time scales, e.g. seasonal or intraseasonal variability?

Goal II: Identify the physical processes that are responsible for the ventilation of the Tropical North East Atlantic.

1. Motivation

2. Data

3. Results

- 3.1 O₂ mooring time series / dominant time scales of O₂ fluctuations
- 3.2 Seasonal cycle
- 3.3 Velocity and O₂ fluctuations / O₂ flux
- 4. Summary

1. Motivation

2. Data

3. Results

- 3.1 O₂ mooring time series / dominant time scales of O₂ fluctuations
- 3.2 Seasonal cycle
- 3.3 Velocity and O_2 fluctuations / O_2 flux
- 4. Summary

Moored observations

O₂ time series

14

Helmholtz Centre for Ocean Research Kiel

O₂ time series, lowpass >90d

GEOMAR 15 Helmholtz Centre for Ocean Research Kiel

O₂ time series, bandpass (10d – 90d)

GEOMAR 16 Helmholtz Centre for Ocean Research Kiel

1. Motivation

2. Data

3. Results

- 3.1 O₂ mooring time series / dominant time scales of O₂ fluctuations
- **3.2** Seasonal cycle
- 3.3 Velocity and O₂ fluctuations / O₂ flux
- 4. Summary

130

O₂ seasonal cycle at 300m along 23°W

 O_2 [µmol kg⁻¹]

130

110

100

90

80

70

60

50

40

 O_2 [µmol kg⁻¹]

8°N

11.5°N

130

120

110

100

90

80 70

60

40

---- 2009

---- 2011

- - - 2012

2

4

50 - - - 2010

O₂ [µmol kg⁻¹]

O₂ seasonal cycle at 300m along 23°W

130

120

110

100

90

80

70

60

40

---- 2009

---- 2011

2

50 - - - 2010

 O_2 [µmol kg⁻¹]

5°N

6

month

4

8

10

12

6

month

10

12

8

blue/red: monthly means of individual years

4. Summary

O₂ seasonal cycle at 300m along 23°W

4°N

8°N

blue/red: monthly means of individual years

black: monthly means of all years

O₂ seasonal cycle at 500m along 23°W

O₂ seasonal cycle at 500m along 23°W

O₂ seasonal cycle at 500m along 23°W

1. Motivation

2. Data

3. Results

- 3.1 O₂ mooring time series / dominant time scales of O₂ fluctuations
- 3.2 Seasonal cycle
- **3.3** Velocity and O₂ fluctuations / O₂ flux
- 4. Summary

O₂ time series

Helmholtz Centre for Ocean Research Kiel

Helmholtz Centre for Ocean Research Kie

- 1. Motivation
- 2. Data
- 3. Results
 - 3.1 O₂ mooring time series / dominant time scales of O₂ fluctuations
 - 3.2 Seasonal cycle
 - **3.3** Velocity and O₂ fluctuations / O₂ flux
- 4. Summary

Summary

- O₂ mooring time series provide a reliable data set to manifest the complexity of O₂ fluctuations.
 - The Tropical Atlantic is rich of O_2 variability on seasonal (30% 60%) and intraseasonal (up to 30% of total O_2 variance) time scales.

No well-defined seasonal cycle at 300m / some indication for a seasonal cycle at 500m.

Seasonal variability of zonal currents might contribute to O₂ supply of the southern OMZ boundary.

Acknowledgements

This study was founded by the Sonderforschungsbereich SFB754 'Climate-Biogeochemistry Interactions in the Tropical Ocean'.

Oxygen mooring time series were acquired in cooperation with the PIRATA project as well as the SFB754.

Thank you for your attention!

