43 research outputs found

    Engineering of Structural Variants using CRISPR/Cas in Mice

    Get PDF
    Structural variations (SVs) contribute to the variability of our genome and are often associated with disease. Their study in model systems was hampered until now by labor-intensive genetic targeting procedures and multiple mouse crossing steps. Here we present the use of CRISPR/Cas for the fast (10 weeks) and efficient generation of SVs in mice. We specifically produced deletions, inversions, and also duplications at six different genomic loci ranging from 1.1 kb to 1.6 Mb with efficiencies up to 42%. After PCR-based selection, clones were successfully used to create mice via aggregation. To test the practicability of the method, we reproduced a human 500 kb disease-associated deletion and were able to recapitulate the human phenotype in mice. Furthermore, we evaluated the regulatory potential of a large genomic interval by deleting a 1.5 Mb fragment. The method presented permits rapid in vivo modeling of genomic rearrangements

    Rare germline copy number variants (CNVs) and breast cancer risk.

    Get PDF
    Funder: CIHRGermline copy number variants (CNVs) are pervasive in the human genome but potential disease associations with rare CNVs have not been comprehensively assessed in large datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases and 76,122 controls of European ancestry with genome-wide array data. Gene burden tests detected the strongest association for deletions in BRCA1 (P = 3.7E-18). Nine other genes were associated with a p-value < 0.01 including known susceptibility genes CHEK2 (P = 0.0008), ATM (P = 0.002) and BRCA2 (P = 0.008). Outside the known genes we detected associations with p-values < 0.001 for either overall or subtype-specific breast cancer at nine deletion regions and four duplication regions. Three of the deletion regions were in established common susceptibility loci. To the best of our knowledge, this is the first genome-wide analysis of rare CNVs in a large breast cancer case-control dataset. We detected associations with exonic deletions in established breast cancer susceptibility genes. We also detected suggestive associations with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes will be required to reach robust levels of statistical significance

    Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry

    Get PDF
    Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10 ) and AC058822.1 (P = 1.47 × 10 ), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10 ), demonstrating the importance of diversifying study cohorts. [Abstract copyright: © 2023. The Author(s).

    Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element

    Get PDF
    A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30-to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 x 10(-31)).Peer reviewe

    Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element.

    Get PDF
    A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10)

    Reversible emulsification controlled by ionic surfactants and responsive nanoparticles

    No full text
    International audienc

    Schaaf-Yang syndrome overview: Report of 78 individuals

    No full text
    Schaaf-Yang Syndrome (SYS) is a genetic disorder caused by truncating pathogenic variants in the paternal allele of the maternally imprinted, paternally expressed gene MAGEL2, located in the Prader-Willi critical region 15q11-15q13. SYS is a neurodevelopmental disorder that has clinical overlap with Prader-Willi Syndrome in the initial stages of life but becomes increasingly distinct throughout childhood and adolescence. Here, we describe the phenotype of an international cohort of 78 patients with nonsense or frameshift mutations in MAGEL2. This cohort includes 43 individuals that have been reported previously, as well as 35 newly identified individuals with confirmed pathogenic genetic variants. We emphasize that intellectual disability/developmental delay, autism spectrum disorder, neonatal hypotonia, infantile feeding problems, and distal joint contractures are the most consistently shared features of patients with SYS. Our results also indicate that there is a marked prevalence of infantile respiratory distress, gastroesophageal reflux, chronic constipation, skeletal abnormalities, sleep apnea, and temperature instability. While there are many shared features, patients with SYS are characterized by a wide phenotypic spectrum, including a variable degree of intellectual disability, language development, and motor milestones. Our results indicate that the variation in phenotypic severity may depend on the specific location of the truncating mutation, suggestive of a genotype-phenotype association. This evidence may be useful in both prenatal and pediatric genetic counseling
    corecore