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SUMMARY

Structural variations (SVs) contribute to the variability
of our genome and are often associated with dis-
ease. Their study in model systems was hampered
until now by labor-intensive genetic targeting proce-
dures and multiple mouse crossing steps. Here we
present the use of CRISPR/Cas for the fast (10weeks)
and efficient generation of SVs in mice. We specif-
ically produced deletions, inversions, and also dupli-
cations at six different genomic loci ranging from 1.1
kb to 1.6 Mb with efficiencies up to 42%. After PCR-
based selection, clones were successfully used to
create mice via aggregation. To test the practicability
of the method, we reproduced a human 500 kb dis-
ease-associated deletion and were able to recapitu-
late the human phenotype in mice. Furthermore, we
evaluated the regulatory potential of a large genomic
interval by deleting a 1.5 Mb fragment. The method
presented permits rapid in vivo modeling of genomic
rearrangements.
INTRODUCTION

Genomic structural variations (SVs) are large-scale structural

differences in the genomic DNA ranging in size from a few

kilobases to entire chromosomes. SVs may be unbalanced

as in deletions, duplications, and insertions or balanced as in

inversions and translocations or a combination thereof. SVs

contribute to a large extent to the variability of our genome

and are often associated with disease (Stankiewicz and Lupski,

2010). When occurring within the coding sequence of genes,

they can affect the protein sequence and thereby protein

function or stability. When encompassing one or several cod-

ing units, deletions or duplications lead to changes in gene

dosage. Furthermore, it was shown that SVs could interfere

with gene regulation by disrupting genomic architecture neces-
Ce
sary for proper enhancer-promoter interactions. Such rear-

rangements can result in loss of WT interactions and/or ectopic

enhancer-promoter interactions, thereby resulting in gene mis-

expression (Montavon et al., 2012; Spielmann et al., 2012;

Spielmann and Mundlos, 2013). To discriminate between these

multiple effects and to study their complex molecular pathology

in vivo modeling of SVs is required.

SVs can be induced by radiation via the induction of double-

strand breaks, but this is a random process that cannot be tar-

geted to specific genomic regions. So far, allelic series involving

the remodeling of large DNA segments have been obtained from

the cis and trans recombination of targeted loxP sites in mouse

chromosomes (Hérault et al., 1998; Ruf et al., 2011; Spitz

et al., 2005). However, these approaches are time consuming

and laborious, involving the targeting of loxP sequences and

subsequent mice crossings with Cre driver animals, a procedure

taking at least 12 months. More recently, Zinc Finger nucleases

(ZNF) or transcription activator-like effector nucleases (TALENs)

have been shown to induce targeted SVs of several hundred ki-

lobases in mammalian cells. In vivo inversions and deletions up

to 1 Mb could be obtained in zebrafish (Bauer et al., 2013; Gupta

et al., 2013; Lee et al., 2012; Xiao et al., 2013). However, to our

knowledge, these methods were not applied to generate large

structural variants in mice. This might be due to the process of

generating specific ZNF nucleases or TALEN that is rather slow

and requires expert knowledge.

The recent development of the CRISPR/Cas technology has

led to a wider use of genome editing, opening new possibilities

to engineer SVs in various model systems (Hsu et al., 2014;

Peng et al., 2014; Wang et al., 2013). Indeed, two synthetic guide

RNAs (sgRNAs), targeted at two different positions of a chromo-

some, are able to induce inversions and deletions through non-

homologous end joining (NHEJ). For instance, Xiao et al. (2013)

were able to induce 1.5 kb deletions in zebrafish embryos by in-

jecting sgRNAs and Cas9 directly into zygotes. Similarly, larger

structural rearrangements involving deletions, inversions, and

translocations were obtained in HEK293 or in murine eurythro-

leukemia (MEL) cell lines (Canver et al., 2014; Choi and Meyer-

son, 2014).
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Figure 1. Two sgRNAs Can Induce Structural Variants of the Intermediate Genomic Region

(A) Overview and timing of CRISVar to obtain SVs in mouse.

(B) A 232 kb region at the Pitx1 locus targeted for deletion, inversion, and duplication. Cas9 proteins and sgRNAs are depicted in yellow.

(C) PCR amplifications of breakpoints from the different genetic configurations (DEL, deletion; DUP, duplication; INV A, inversion breakpoint A; INV B, inversion

breakpoint B). BRP (breakpoints) A and B represent the WT product at the CRISPR target sites.

(D) Genetic variability at the rearranged andWT breakpoints. SgRNAs are marked in green or red. Sequences of three clones are shown for each type of junction.

See also Figure S1 and Table S1.
In this study, we applied theCRISPR/Cas technology inmouse

embryonic stem cells (ESCs) and developed a 10-week protocol

that we named CRISVar (CRISPR/Cas-induced structural vari-

ants) to efficiently produce deletions, inversions, and duplica-

tions in mice. We were able to rearrange targeted genomic

intervals ranging from 1 kb to 1.6 Mb using the CRISPR/Cas sys-

tem in ESCs (Figure 1A).Moreover, we show that ESCs harboring

these mutations can be used to create chimeric animals. Finally,

we show at the Laf4 and Epha4 loci the ability of CRISVar

to model human pathogenic SVs and to evaluate the regulatory

influence of a large gene desert, respectively.
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RESULTS

CRISPR/Cas for the Induction of SVs in Mouse ESCs
To test the ability of CRISPR/Cas to generate structural variants

in mice, we first targeted the pleiotropic and developmentally

associated locus Pitx1. We designed two sgRNAs in the gene

desert adjacent and telomeric to Pitx1 promoter. The two-tar-

geted sites are separated by 232 kb of intermediate gene desert.

After transfection of ESCs with the CRISPR constructs, we

screened 288 clones for inversions, deletions, and duplications

using a PCR-based approach (Figures 1B and S1). We detected



Table 1. Synthesis of Targeted SVs Efficiencies

Name of the Locus H2afy Bmp2 Ihh Pitx1 Laf4 Epha4

CRISPR vector pX330 pX330 pX459 pX459 pX459 pX330

Size of the rearranged region 1,189 bp 3.7 kb 12.6 kb 32 kb 353kb 1.672 Mb

Deleted 11 (3.8%) 12 (6.3%) 121 (42%) 9 (3.1%) 38 (13.2%) 4 (2.1%)

Inverted (two breakpoints mapped) 2 (0.7%) 3 (1.6%) 7 (2.4%) 3 (1%) 12 (4.2%) 3 (1.6%)

Inverted (one breakpoint mapped) 0 (0%) 0 (0%) 9 (3.1%) 8 (2.8%) 20 (6.9%) 1 (0.5%)

Duplicated 0 (0%) 0 (0%) 0 (0%) 2 (0.7%) 81 (28.1%) 0 (0%)

Deleted/inverted (two breakpoints

mapped)

1 (0.3%) 1 (0.5%) 3 (1.0%) 0 (0%) 11 (3.8%) 0 (0%)

Deleted/inverted (one breakpoint

mapped)

0 (0%) 1 (0.5%) 2 (0.7%) 1 (0.3%) 9 (3.1%) 0 (0%)

Deleted/duplicated 1 (0.3%) 0 (0%) 1 (0.3%) 4 (1.4%) 28 (10%) 0 (0%)

Inverted/duplicated (two breakpoints

mapped)

0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (2.1%) 0 (0%)

Inverted/duplicated (one breakpoint

mapped)

0 (0%) 0 (0%) 0 (0%) 2 (0.7%) 17 (5.9%) 0 (0%)

Number of screened clones 288 192 288 288 288 192

Successfully aggregated clones one deletion - - one inversion two deletions one inversion

- - - one deletion one duplication one deletion

Numbers and percentages are indicated for each type of rearrangements at every locus. Deletions and inversions were found in all cases. Duplications

where identified in four of six loci. The number of successfully aggregated clones for each allele is indicated in the bottom track.
and sequenced junctions from all three types of structural vari-

ants (Figures 1C and 1D). Deletions and inversions were found

most frequently (5%) followed by duplications (3%). Unexpect-

edly, not all inversion breakpoints could be mapped (Table 1).

SVs did not always segregate with a WT allele but were often

found accompanied by other SVs on the homologous chromo-

some. For instance, one of the clones harbored a deletion and

an inversion, indicating that NHEJ occurred simultaneously in

the two homologous chromosomes. The absence of the WT

variant in this clone was confirmed by the loss of PCR product

at both sgRNA binding sites (Figure 1C). Another interesting phe-

nomenon was observed in some of the duplicated alleles. Dupli-

cations originate from translocations between homologous

chromosomes; thereby one of the chromosomes loses a copy

of the rearranged DNA while the other gains it. In our experi-

ments, duplications segregated with a deletion in only half of

the cases. In the others, we found duplications segregating

with an inverted or aWT homologous region (Figure 1C). A similar

observation was described using ZNF nucleases in mammalian

cells (Lee et al., 2012).

Sequencing of the junction products revealed diversity of the

genomic position where the NHEJ had occurred as well as loss

of DNA segments (Figure 1D). Double-strand breaks induced

by the Cas9 endonuclease at their target sites were shown to

result in local indels, thereby explaining the allele-to-allele vari-

ability (Canver et al., 2014). Moreover, sequence changes were

also observed in alleles genotyped as WT, suggesting defective

repair (Figure 1D).

After successfully implementing CRISVar at the Pitx1 locus,

we targeted other regions of the genome to rule out the possibil-

ity that the observed effects were locus specific. We aimed at re-

gions near the genesH2afy,Bmp2, Ihh, Laf4 andEpha4 (Figure 2)
Ce
with rearrangements of 1.1 kb, 3.7 kb, 12.6 kb, 353 kb, and 1.6

Mb, respectively (Table 1). Interestingly, the frequency at which

SVs occurred was different from one locus to another without

evident relation to the genomic distance separating the two

CRISPR sites. We observed deletions and inversions at all sites,

although with a variation in their frequency of around 10-fold be-

tween experiments. Duplications were observed at three of

these five rearranged loci.

Next, we wanted to test whether the here-produced clones

could be used to create viable animals. We aggregated ESCs

from eight selected clones to produce animals carrying dele-

tions, duplication, and inversions at the above-mentioned loci.

We were able to produce highly chimeric animals for all rear-

rangement types and loci (Table 1). In our hands, all aggregated

ESC clones performed to produce chimeric animals.

A 353 kb Intragenic Deletion of Laf4 Recapitulates a
Human Malformation Syndrome
In order to confirm the effectiveness of this genetic tool to

generate mouse models, we aimed at reproducing a human dis-

ease-associated SV of unknown pathogenicity (Steichen-Gers-

dorf et al., 2008). The SV had occurred de novo, but its functional

relevance remained unclear. The patient suffered from multiple

malformations, including shortening of the femur, aplasia of the

fibula, a triangular tibia, and three toes (Figure 3B). Because of

the tibia malformation, the diagnosis of a Nievergelt-like syn-

drome was made. To evaluate the function of LAF4, we first pro-

duced a conventional knockout by targeted recombination. We

could not observe a phenotype in homozygous mice, showing

that inactivation of Laf4 cannot reproduce the human phenotype

in the mouse (data not shown). We therefore re-evaluated the

published data and found that the deletion was smaller than
ll Reports 10, 833–839, February 10, 2015 ª2015 The Authors 835



Figure 2. Rearrangements at Other Loci

Summary of the other alleles in which SVs were

induced. The alleles are ordered from the smallest

generated SV (top: H2afy) to the largest (bottom:

Epha4). Sizes of the rearranged regions are indi-

cated next to the locus name.
originally thought, encompassing only nine exons of the LAF4

gene and not the entire genomic region. The breakpoints of

this 500 kb deletion were mapped in introns 3 and 12, thus elim-

inating exons 4 to 12 of LAF4 without introducing a frameshift.

The predicted product is a truncated 850 amino acids protein

lacking a domain predicted to be involved in transcription activa-

tion (Ma and Staudt, 1996). To specifically model this SV, we de-

signed sgRNA at the homologous regions in the mouse genome

corresponding to the human breakpoints (Figures 2 and 3A).

The screening of ESCs revealed clones with heterozygous

and homozygous deletions of the 353 kb homologous region.

In chimeric animals generated from heterozygous as well as ho-

mozygous clones, we observed a short zeugopod in the upper

limb (Figure 3C). The lower-limb abnormalities recapitulated

part of the human phenotype showing a small, triangular ossifi-

cation center of the tibia and severe hypoplasia of the fibula (Fig-

ure 3C). In contrast to the patient, themice had polydactyly of the

feet with incomplete penetrance. Thus, the specific intragenic

deletion in Laf4 generated by CRISPR/Cas recapitulated the

patient’s phenotype, demonstrating the pathogenicity of this

SV. It is likely that the truncated protein exerts a dominant-nega-

tive effect, thereby leading to the observed abnormalities of bone

formation.

A 1.5 Mb Deletion of a Gene Desert Encompassing
Epha4 Results in Hindlimb Hopping Gait
Large gene deserts are thought to harbor regulatory elements

and often surround developmentally active genes. We aimed

at using the here-described method to challenge the integrity

of such a locus. At the Epha4/Pax3 extended locus, two gene

deserts centromeric and telomeric to Epha4 might regulate

either one or both genes. Epha4 has been shown to control

neuronal guidance in hindlimbs. Pax3 is a transcription factor

with important function in the migration of muscle progenitors

in the limbs and neural crest migration. Mice with mutations in

Pax3 show pigmentation defects, early lethality due to heart de-

fects, spina bifida, and exencephaly. We induced a deletion ex-

tending 1 Mb centromeric and 350 kb telomeric to the Epha4
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transcription unit (Figure 4A). Heterozy-

gous clones were used to produce

mice with a 1.5 Mb deletion, which

were subsequently bred to homozygosi-

ty. We observed a neurological pheno-

type in these animals, consisting of a

hopping gait, as previously described

for Epha4 loss of function (Figure 4B;

Movie S1) (Dottori et al., 1998). Other ab-

normalities were not observed in these

mice. In particular, we did not detect

any of the Pax3-associated phenotypes
such as pigmentation defects and abnormalities of the spine

or the brain. Furthermore, in situ hybridization of Pax3 in deletion

embryos revealed a normal pattern of expression (data not

shown). Our finding that the 1.5 Mb deletion results in a full

recapitulation of the Epha4 knockout without additional abnor-

malities indicates that the region does not contain elements

essential for Pax3 regulation.

DISCUSSION

CRISPR/Cas is a rapid and efficient method to specifically edit

genomes (Cho et al., 2013; Wang et al., 2013). Here we show

that by targeting two sgRNAs at two distal genomic sites we

can induce the rearrangement of the intermediate DNA fragment

up to 1.6 Mb in ESCs. We show that duplications, deletions, and

inversions can be obtained in different clones, but they may also

occur in various combinations together.

We observed extensive variability in the targeting efficiency

from one locus to another. Although the size of the re-arranged

DNA region was previously shown to play an important role in

targeting efficiency, we were not able to confirm this relationship

(Canver et al., 2014). One of the possibilities is that the chromatin

‘‘openness’’ at the CRISPR target site affects the cutting effi-

ciency of Cas9 and thereby increases the probability of NHEJ

between the two distal breakpoints. In fact, it has been shown

that Cas9 binds better at open chromatin sites, where it has

higher off-target effects (Kuscu et al., 2014). In this view, the

epigenetic status of the targeted regionmight influence the over-

all efficiency of the rearrangement.

Furthermore, we frequently found sequence variations at the

SV breakpoints. The randomness of NHEJ after a double-strand

break is likely to be accountable for this diversity. This might also

explain why several inverted clones could be mapped at a single

breakpoint only: the other one being too extensively modified for

a proper PCR reaction to occur. This variability in the NHEJ pro-

cess also pinpoints to the limitations of PCR-oriented allele

detection; indeed, several false-negative clones with deletions,

duplications, or inversions may have been missed because of



Figure 3. A 350 kb Deletion at the Laf4 Locus Recapitulates Nievergelt Syndrome

(A) Schematic of the extended Laf4 genomic region. CRISPR/Cas binding sites are depicted in yellow. The induced deletion (350 kb) is shown below.

(B) Radiograph of patient lower leg showing triangular tibia, missing fibula, and oligodactyly.

(C) Skeletal preparations of WT and mutant embryos at E16.5. Cartilage is shown in blue and bone in red. Note the short ulna and radius with small ossification

centers in forelimb and triangular tibia (magnification shown on right) and severely hypoplastic fibula in hindlimb.

See also Table S2.
extensive rearrangements at their breakpoints, inhibiting proper

PCR reactions to occur. Because of this uncertainty, these

clones were not processed further and discarded. Given the

high efficiency of CRISVar, this was not considered a problem.

We also observed that WT alleles might harbor indels induced

by CRISPR/Cas. Thus, the WT allele should also be sequenced

at the target site.

The limitations of CRISVar can be efficiently bypassed by

a proper screening of ESC clones and subsequent mouse

crossing. Such extensive screening might be a limiting step if

the method would be applied directly to mouse zygotes. How-

ever, it is unclear how efficient microinjections of sgRNAs and

Cas9 directly into embryos would be. Further testing is thus

required to compare the efficiency of both approaches. The ad-

vantages of producing SVs in ESCs are on the one hand the pos-

sibility of retargeting to introduce additional mutations and on the

other hand the direct use of these cells in culture to investigate

the effects of SVs.

Thus, with CRISVar, large and small SVs of various types can

be produced with high efficiency and in a short time period to

study the effect of genomic rearrangements and their pathoge-

netic effect. As shown at the Laf4 locus, human SVs may exert

their effects in a specific manner, necessitating an exact repro-

duction in the mouse genome to evaluate their pathogenicity.

CRISPR/Cas-mediated genome editing can be used to effi-

ciently create such rearrangements. Finally, as shown in the

Epha4 example, the method can be used to challenge the integ-

rity of genomic regulatory units, as they have recently been

proposed (Marini�c et al., 2013).
Ce
EXPERIMENTAL PROCEDURES

CRISPR sgRNAs Selection and Cloning

SgRNAs were designed flanking the regions to rearrange. We used the http://

crispr.mit.edu/ platform to obtain candidate sgRNA sequences with little off-

target specificity. Complementary strands were annealed, phosphorylated,

and cloned into the BbsI site of pX459 or pX330 CRISPR/Cas vector (Addgene;

see Table 1).

ES Cell Culture and Transfection

G4 ESCs (300,000) (George et al., 2007) were seeded on CD1 feeders and

transfected with 8 mg of each CRISPR construct using FuGENE technology

(Promega). When the construct originated from the pX330 vector, cells were

cotransfected with a puromycine-resistant plasmid. PX459, in contrast,

already contains a puromycine-resistance cassette. After 24 hr, cells were split

and transferred onto DR4 puro-resistant feeders and selected with puromy-

cine for 2 days. Clones where then grown for 5 to 6 more days, picked, and

transferred into 96-well plates on CD-1 feeders. After 2 days of culture, plates

were split in triplicates, two for freezing and one for growth and DNA

harvesting.

Positive clones were thawed and grown on CD-1 feeders until they reach an

average of four million cells. Three vials were frozen, and DNA was harvested

from the rest of the cells to confirm genotyping.

PCR-Based Genotyping

Primers were designed on both sides of sgRNAs targets, at a distance of 100–

300 bp from the cutting site. Each allele has thus a set of four primers: T1(fwd)/

T2(rev) amplifying one targeted site and T3(fwd)/T4(rev) amplifying the other

(Figure S1; Table S1). Deletions were mapped using T1 and T4 primers while

inversions were detected with T2/T4 for the proximal breakpoints and T1/T3

for the distal one. Finally, duplications were detected with T2/T3 primers. Pos-

itive PCR bands were Sanger sequenced using one of the amplification

primers.
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Figure 4. CRISPR/Cas-Induced 1.5 Mb

Deletion at the Epha4 Locus

(A) Schematic of the extended Epha4/Pax3

genomic region. CRISPR/Cas binding sites are

depicted in yellow. The induced deletion (1.5 Mb)

is shown below.

(B) The deletion of a 1.5 Mb region containing the

Epha4 gene and surrounding gene desert results

in a phenocopy of Epha4 knockout mouse but no

other abnormalities. Footprints of hindlimbs show

hopping gait in deletion mutant.

See also Movie S1.
Screening for Laf4 Homozygote Deletion Clones

Quantification of copy-number variation of the deleted interval in comparison

to other genomic positions was performed with a set of qPCR primers (see

Table S2).

Mouse Aggregation

A frozen ESC vial was seeded on CD-1 feeders, and cells were grown for

2 days. Mice were generated by diploid or tetraploid aggregation (Artus and

Hadjantonakis, 2011). All animal procedures were in accordance with institu-

tional, state, and government regulations (LAGeSo).

Leg Footprints

Adult mice were encouraged to run over a white paper sheet after their hindfeet

were soaked in blue ink.

Skeletal Preparation

E16.5 animals were processed and stained as described previously (Mundlos,

2000).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

one figure, two tables, and one movie and can be found with this article online

at http://dx.doi.org/10.1016/j.celrep.2015.01.016.
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