6,198 research outputs found
The regional-scale surface mass balance of Pine Island Glacier, West Antarctica, over the period 2005--2014, derived from airborne radar soundings and neutron probe measurements
We derive recent surface mass balance (SMB) estimates from airborne radar observations along the iSTAR traverse (2013, 2014) at Pine Island Glacier (PIG), West Antarctica. Ground-based neutron probe measurements provide information of snow and firn density with depth at 22 locations and were used to date internal annual reflection layers. The 2005 layer was traced for a total distance of 2367 km to determine annual mean SMB for the period 2005â2014. Using complementary SMB estimates from two regional climate models, RACMO2.3p2 and MAR, and a geostatistical kriging scheme, we determine a regional-scale SMB distribution with similar main characteristics to that determined for the period 1985â2009 in previous studies. Local departures exist for the northern PIG slopes, where the orographic precipitation shadow effect appears to be more pronounced in our observations, and the southward interior, where the SMB gradient is more pronounced in previous studies. We derive total mass inputs of 79.9 +/- 19.2 and 82.1 +/- 19.2 Gt yr-1 to the PIG basin based on complementary ASIRASâRACMO and ASIRASâMAR SMB estimates, respectively. These are not significantly different to the value of 78.3 +/- 6.8 Gt yr-1 for the period 1985â2009. Thus, there is no evidence of a secular trend at decadal scales in total mass input to the PIG basin. We note, however, that our estimated uncertainty is more than twice the uncertainty for the 1985â2009 estimate on total mass input. Our error analysis indicates that uncertainty estimates on total mass input are highly sensitive to the selected krige methodology and assumptions made on the interpolation error, which we identify as the main cause for the increased uncertainty range compared to the 1985â2009 estimates
Bank lending, crises, and changing ownership structure in Central and Eastern European countries
We examine the interactions of bank lending dynamics, ownership structures, and crisis phenomena in the banking systems of Central and Eastern European (CEE) countries. Using a panel dataset of more than 400 banks for the period from 1994â2010, we show that the impact of ownership structure on a bankâs lending activities in CEE countries was conditional upon the type of crisis, namely, whether it was a host, home, global, or simultaneous crisis. In contrast, our evidence indicates that bank-specific characteristics, such as deposit growth and profitability ratios, are significant determinants of credit growth during both normal economic times and crisis periods, regardless of the crisis type. Moreover, we provide indirect evidence of the benefits of banking sector diversification dependent upon the criterion of parent banksâ country of origin
Averages of b-hadron Properties at the End of 2005
This article reports world averages for measurements on b-hadron properties
obtained by the Heavy Flavor Averaging Group (HFAG) using the available results
as of at the end of 2005. In the averaging, the input parameters used in the
various analyses are adjusted (rescaled) to common values, and all known
correlations are taken into account. The averages include lifetimes, neutral
meson mixing parameters, parameters of semileptonic decays, branching fractions
of B meson decays to final states with open charm, charmonium and no charm, and
measurements related to CP asymmetries
Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Sciences Congress at Rostock University, Germany, 19-22 March 2007
The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions
Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel. A smart nanostructured pillow for near-infrared light-driven biomedical applications
Multifunctional nanomaterials with the ability to respond to near-infrared (NIR) light stimulation are vital for the development of highly efficient biomedical nanoplatforms with a polytherapeutic approach. Inspired by the mesoglea structure of jellyfish bells, a biomimetic multifunctional nanostructured pillow with fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatform with several hierarchical levels designed to generate a series of controlled, rapid, and reversible cascade-like structural changes upon NIR light irradiation. The mechanical contraction of the nanostructured platform, resulting from the increase of temperature to 42 °C due to plasmonic hydrogel-light interaction, causes a rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. The mutual effects of the rise in temperature and water flow stimulate the release of molecules from the nanofibers. To expand the potential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level for performing photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates the efficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirms the pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy
Antarctic Environmental Change and Ice Sheet Evolution through the Miocene to Pliocene Âż A perspective from the Ross Sea and George V to Wilkes Land Coasts
We wish to acknowledge the support of National Antarctic Programmes and the International Scientific Drilling Programmes and Projects that have allowed our community to acquire the critical records of environmental change that have been discussed in this review. We thank Jenny Black, GNS Science, for her assistance with Fig. 9.2. R.L., T.N., R.M., C.O. and N.G. acknowledge funding support from the New Zealand Ministry of Business and Innovation and Employment through the Antarctic Science Platform contract (ANTA1801) Antarctic Ice Dynamics Project (ASP-021-01). C.E. acknowledges funding by the Spanish Ministry of Economy, Industry and Competitivity (grant CTM2017-89711-C2-1/2-P), co-funded by the European Union through FEDER funds. L.F.P. was funded through the European Unionâs Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement number 792773 for the West Antarctic Margin Signatures of Ice Sheet Evolution (WAMSISE) Project
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
- âŠ