90 research outputs found

    Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production

    Get PDF
    Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processin

    Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222

    Get PDF
    Paracoccus denitrificans PD1222 accumulates short-length polyhydroxyalkanoates, poly(3-hydroxybutyrate), under nitrogen-deficient conditions. Polyhydroxybutyrate metabolism requires the 3-ketoacyl-CoA thiolase PhaA, the acetoacetyl-CoA dehydrogenase/reductase PhaB and the synthase PhaC for polymerization. Additionally, P. denitrificans PD1222 grows aerobically with nitrate as sole nitrogen source. Nitrate assimilation is controlled negatively by ammonium through the two-component NtrBC system. NtrB is a sensor kinase that autophosphorylates a histidine residue under low-nitrogen concentrations and, in turn, transfers a phosphoryl group to an aspartate residue of the response regulator NtrC protein, which acts as a transcriptional activator of the P. denitrificans PD1222 nasABGHC genes. The P. denitrificans PD1222 NtrB mutant was unable to use nitrate efficiently as nitrogen source when compared to the wild-type strain, and it also overproduced poly(3-hydroxybutyrate). Acetyl-CoA concentration in the P. denitrificans PD1222 NtrB mutant strain was higher than in the wild-type strain. The expression of the phaC gene was also increased in the NtrB mutant when compared to the wild-type strain. These results suggest that accumulation of poly(3-hydroxybutyrate) in the NtrB mutant strain of PD1222 responds to the high levels of acetyl-CoA that accumulate in the cytoplasm as consequence of its inability to efficiently use nitrate as nitrogen source

    A sustainable bioprocess to produce bacterial cellulose (BC) using waste streams from wine distilleries and the biodiesel industry: evaluation of BC for adsorption of phenolic compounds, dyes and metals

    Get PDF
    BackgroundThe main challenge for large-scale production of bacterial cellulose (BC) includes high production costs interlinked with raw materials, and low production rates. The valorization of renewable nutrient sources could improve the economic effectiveness of BC fermentation while their direct bioconversion into sustainable biopolymers addresses environmental pollution and/or resource depletion challenges. Herein a green bioprocess was developed to produce BC in high amounts with the rather unexplored bacterial strain Komagataeibacter rhaeticus, using waste streams such as wine distillery effluents (WDE) and biodiesel-derived glycerol. Also, BC was evaluated as a bio-adsorbent for phenolics, dyes and metals removal to enlarge its market diversification.ResultsBC production was significantly affected by the WDE mixing ratio (0–100%), glycerol concentration (20–45 g/L), type of glycerol and media-sterilization method. A maximum BC concentration of 9.0 g/L, with a productivity of 0.90 g/L/day and a water holding capacity of 60.1 g water/g dry BC, was achieved at 100% WDE and ≈30 g/L crude glycerol. BC samples showed typical cellulose vibration bands and average fiber diameters between 37.2 and 89.6 nm. The BC capacity to dephenolize WDE and adsorb phenolics during fermentation reached respectively, up to 50.7% and 26.96 mg gallic acid equivalents/g dry BC (in-situ process). The produced BC was also investigated for dye and metal removal. The highest removal of dye acid yellow 17 (54.3%) was recorded when 5% of BC was applied as the bio-adsorbent. Experiments performed in a multi-metal synthetic wastewater showed that BC could remove up to 96% of Zn and 97% of Cd.ConclusionsThis work demonstrated a low-carbon approach to produce low-cost, green and biodegradable BC-based bio-adsorbents, without any chemical modification. Their potential in wastewater-treatment-applications was highlighted, promoting closed-loop systems within the circular economy era. This study may serve as an orientation for future research towards competitive or targeted adsorption technologies for wastewater treatment or resources recovery
    corecore