473 research outputs found

    Investigation of the Role of Plasticizers in Film-forming Coats for Protecting Cooled Meat

    Full text link
    As a result of theoretical studies on problems of protection and prolongation of storage terms of meat, it was revealed, that one of promising directions is to use protecting coats, based on natural biopolymers.The topicality of this study is in studying film-forming coats, based on natural polysaccharides, because they have high mechanical indices, absence of a smell, taste and are subjected to biological destruction. For regulating mechanical properties, the composition of film-creating coats is added with plasticizers of different origins.The aim of this work is in describing characteristics of food films, based on carrageenan, sodium alginate and plasticizers of different origins.There were mechanical, rheological properties of protecting coats. The comparative characteristic of these properties, depending on an added plasticizer, was realized. The type and mechanisms of interaction of components of the film-forming coat and plasticizers were completely described. The viscosity of the film-forming coat with a plasticizer has less values comparing with other solutions. Adding plasticizers resulted in increasing the film elasticity, but at the same time some increase of the firmness was observed.Film-forming coats with adding a plasticizer had a higher limit of fluidity, so they were firmer than complex film-forming coats without a plasticizer. From the other side, deformation values of film-forming coats without adding a plasticizer were higher than ones of complex film-forming coats with adding a plasticizer, because they were firmer.The study of physical properties of developed film-forming coats, based on hydrocolloids, demonstrated that coats with a plasticizer have more gas permeability.According to the results, obtained at experiments it was established, that the film-forming coat, based on sodium alginate, carrageenan and glycerin, has best mechanical, physical and rheological indices

    Robust Multi-Partite Multi-Level Quantum Protocols

    Full text link
    We present a tripartite three-level state that allows a secret sharing protocol among the three parties, or a quantum key distribution protocol between any two parties. The state used in this scheme contains entanglement even after one system is traced out. We show how to utilize this residual entanglement for quantum key distribution purposes, and propose a realization of the scheme using entanglement of orbital angular momentum states of photons.Comment: 9 pages, 2 figure

    Machine learning for performance improvement of periodic NFT-based communication system

    Get PDF
    We compare performance of several machine learning methods, including support vector machine, k-nearest neighbours, k-means clustering, and Gaussian mixture model, used for increasing transmission reach in the optical communication system based on the periodic nonlinear Fourier transform signal processin

    Combining nonlinear Fourier transform and neural network-based processing in optical communications

    Get PDF
    We propose a method to improve the performance of the nonlinear Fourier transform (NFT)-based optical transmission system by applying the neural network post-processing of the nonlinear spectrum at the receiver. We demonstrate through numerical modeling about one order of magnitude bit error rate improvement and compare this method with machine learning processing based on the classification of the received symbols. The proposed approach also offers a way to improve numerical accuracy of the inverse NFT; therefore, it can find a range of applications beyond optical communications

    Unsupervised and supervised machine learning for performance improvement of NFT optical transmission

    Get PDF
    We apply both the unsupervised and supervised machine learning (ML) methods, in particular, the k-means clustering and support vector machine (SVM) to improve the performance of the optical communication system based on the nonlinear Fourier transform (NFT). The NFT system employs the continuous NFT spectrum part to carry data up to 1000 km using the 16-QAM OFDM modulation. We classify the performance of the system in terms of BER versus signal power dependence. We show that the NFT system performance can be improved considerably by means of the ML techniques and that the more advanced SVM method typically outperforms the k-means clustering

    Current Innovations of the Biotechnology Market: The Advantages and Economic Benefits

    Get PDF
    Environmental pollution due to anthropogenic activity in many regions of the planet and, in particular, in Ukraine has reached a critical level. Thus, the situation in the field of processing, utilization and, especially, disinfection of waste of various origins has become more complicated, which leads to regular accidents at municipal wastewater treatment plants and landfills. One of the main directions of solving these problems is the development of high-efficiency biological products aimed at minimizing and neutralizing the negative effects of environmental pollution. In order to create such biological products, competitive in the world market of biotechnology, on the basis of original domestic methods, a systematic study of ash and slag waste and the impact of various types of cultures of microorganisms on their neutralization was carried out. The study included the following: analysis of statistical data on periods of self-purification of soils and waters; analysis of the results of the use of biological products for cleaning cesspools, food waste processing, compost pits, farmland and polluted water; a comparative analysis of costs during the use of chemical and biotechnological methods of wastewater treatment with the subsequent calculation of the economic effect; analysis of the initial data of coal dust from the state CHP in order to substantiate the feasibility of its further processing both for the extraction of rare trace elements and to reduce the level of ecological damage; proposal and research of domestic biological products to solve the problems of municipal facilities for the purification of domestic wastewater, purification of water bodies and to eliminate emergency spills of petroleum products on the soil and water; computation of the economic efficiency of biotechnology application in comparison with the chemical method of water purification. On the basis of the data obtained, a scheme for the use of biological products for waste disposal, yield improvement, and accident elimination by methods safe for people, animals and the environment is proposed

    Optical Properties of Guanine Nanowires: Experimental and Theoretical Study

    Get PDF
    International audienceLong nanowires formed by ca. 800 guanine tetrads (G4-wires) are studied in phosphate buffer containing sodium cations. Their room temperature optical properties are compared to those of the monomeric chromophore 2-deoxyguanine monophosphate (dGMP). When going from dGMP to G4-wires, both the absorption and the fluorescence spectra change. Moreover, the fluorescence quantum yield increases by a factor of 7.3 whereas the average fluorescence lifetime increases by more than 2 orders of magnitude, indicating emission associated with weakly allowed transitions. The behavior of G4-wires is interpreted in the light of a theoretical study performed in the frame of the exciton theory combining data from molecular dynamics and quantum chemistry. These calculations, carried out for a quadruplex composed of three tetrads, reveal the existence of various exciton states having different energies and oscillator strengths. The degree of delocalization of the quadruplex Franck−Condon excited states is larger than those found for longer duplexes following the same methodology. The slower excited-state relaxation in G4-wires compared to dGMP is explained by emission from exciton states, possibly limited on individual tetrads, whose coherence is reserved by the reduced mobility of guanines due to multiple Hoogsteen hydrogen bonds

    Loffe-Regel' crossover and boson peaks in disordered solid solutions and similar anomalies in heterogeneous crystalline structures

    Get PDF
    Low-frequency features of the phonon spectra of disordered solid solutions and heterogeneous crystalline structures are analyzed at the microscopic level. It is shown that boson-peak type excitations can arise in disordered solid solutions whose sites have only translational degrees of freedom. Thus it is established that such excitations appear mainly because of the additional positional dispersion of sound waves which is due to the disordering. The influence of boson-peak excitations on the low-temperature specific heat is investigated. It is found that in a number of cases the specific heat is more sensitive to excitations of this kind than the low-frequency density of states is. It is shown that anomalies similar to Ioffe-Regel' crossover and boson peaks can also arise in disordered heterogeneous crystalline structures with a complicated lattice

    Deuteron disintegration in three dimensions

    Get PDF
    We compare results from the traditional partial wave treatment of deuteron electro-disintegration with a new approach that uses three dimensional formalism. The new framework for the two-nucleon (2N) system using a complete set of isospin - spin states made it possible to construct simple implementations that employ a very general operator form of the current operator and 2N states.Comment: 24 pages, 15 eps figure
    corecore