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We propose a method to improve the performance of the
nonlinear Fourier transform (NFT)-based optical transmis-
sion system by applying the neural network post-processing
of the nonlinear spectrum at the receiver. We demonstrate
through numerical modeling about one order of magnitude
bit error rate improvement and compare this method with
machine learning processing based on the classification of
the received symbols. The proposed approach also offers
a way to improve numerical accuracy of the inverse NFT;
therefore, it can find a range of applications beyond optical
communications.
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The nonlinear Fourier transform (NFT) [1] has recently
attracted a great deal of interest as a possible way to combat
nonlinear signal distortions in fiber-optic communication
systems [2–5]. In NFT-based optical communications, either
the parameters associated with the discrete eigenvalues (solitary
modes) [2] or the continuous part of the nonlinear spectrum
(dispersive modes) [3–6] can be utilized as data carriers. NFT-
based methods effectively linearize the nonlinear fiber channel.
However, there are many technical problems to be resolved
before NFT will become a practical technology. The major
challenge comes from the nonlinear interaction of signal and
noise, which becomes even more complicated because of the
dispersive spreading [7,8] of the signal and processing-related
noise [9]. This nonlinear interaction of signal and noise leads to
cross-talk between nonlinear spectrum components (nonlinear
modes), degrading the quality of data transmission.

Among various solutions to the nonlinear interaction of
signal and noise in optical communication, several machine
learning (ML) techniques (both supervised and unsupervised)
have already shown their high potential to improve the system
performance (see, e.g., [10–13] and references therein). ML

methods designed for nonlinear system modeling, and inher-
ently nonlinear approaches such as NFT, can be synergistically
combined, enhancing each other. Perhaps, the first combination
of NFT systems with the neural network (NN) equalization
was shown in [14] for mapping of solitons in time domain
directly to symbols, substituting the NFT procedure for the
system employing only solitary modes. Previously, we demon-
strated the successful application of various ML techniques
such as k-nearest neighbors, support vector machine, and other
algorithms in the processing of received symbols for both “tra-
ditional” NFT (with vanishing boundary conditions) schemes
[15] and periodic NFT systems [16,17]. Those ML methods
provide better decision boundaries at the detection stage when
a received symbol is classified and attributed to a transmitted
symbol. Therefore, these solutions can be especially useful when
the optimum boundaries ensuing from the distribution of the
received symbols over the complex plane are notably distorted.
Although this is common in optical communication systems
when nonlinearity plays a significant role, it might be different
in the corresponding NFT-based communication schemes
where the fiber is effectively linearized. This effective lineariza-
tion of fiber is evident in continuous spectrum communication
[18], and the recently introduced b-modulation transmission
[19]. In the range of system parameters that we have studied,
the receiver symbols, distorted by a complicated combination of
noise and signal, form probabilistic clouds that typically retain
a spherical shape—so much like in linear communication with
additive noise. This makes the optimum detection scheme quite
close to the minimum Euclidean distance and leaves little room
to improve the system performance for ML methods. In such
a case, making the cloud size smaller seems to be the only way
to improve a constellation detection scheme. This translates
into reducing the effective noise from the data-carrying sig-
nal (e.g., the continuous spectrum). This entails processing a
continuous function such as the continuous spectrum, r (ξ),
where ξ ∈R plays the role of frequency in the nonlinear Fourier
(NF) domain, instead of processing the resulting constellation
symbols. Denoising a signal is usually done through linear filter-
ing with respect to the characteristics of noise. However, noise
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Fig. 1. Schematics of the NFT-based communication systems with
two strategies of the receiver-side processing involving ML methods,
marked with yellow and purple lines piercing the respective receiver
processing blocks.

in the NF domain is a result of a complicated nonlinear trans-
formation of a mixture of noise and signal. Although there are
some ongoing studies of the noise properties in the NF domain
[7–9], the stochastic characteristics of noise for the continuous
spectrum are not straightforward to use for the design of the
optimum receiver [7]. This calls for development of methods
that can encompass the combined impact of various effects and
distortions in the NF domain and mitigate its effects on the
received signal.

We propose here to apply the supervised ML technique
directly to the continuous nonlinear spectrum r (ξ) of the NFT
system (Fig. 1) rather than for processing the detected symbols
in the received constellations. We employ the algorithm that
utilizes a feedforward artificial NN (Fig. 2) for equalizing the
received r (ξ) waveform to effectively mitigate both the signal
distortion and effective noise in the NFT domain. To show
the efficiency of the proposed denoising NN regression-based
approach, we compare it with an NN-based classifier for the
received symbols. The performance of two approaches is com-
pared in terms of achieved bit error rate (BER) for different
signal powers at two data rates. The classification solution that
we have used as a reference is similar to its successful applica-
tions in NFT communications that have been reported before
[15–17]. We also anticipate that this method can be applicable
to a wide range of similar NFT systems.

We consider the focusing nonlinear Schrödinger equation
(NLSE) with additive white Gaussian noise η as the governing
model for the propagation of signal q in a single-mode fiber
[5,20]. The dimensionless NLSE reads

i
∂q
∂z
+

1

2

∂2q
∂t2
+ |q |2q = η. (1)

We assume ideally distributed amplification where gain fully
compensates for losses. We simulate the propagation of opti-
cal signal down the fiber link for the propagation distance of
1000 km (see Fig. 1). For our simulations, we use an orthogonal
frequency-division multiplexing (OFDM) modulation with
128 sub-carriers in the nonlinear continuous spectrum:

r (ξ, z= 0)=
64∑

k=−63

c ksinc(2ξ − k), (2)

Fig. 2. Schematics of the spectra equalizer implemented as the feed-
forward NN with three fully connected hidden layers. As an input to
the NN, we take a sample from received nonlinear spectra (blue circle)
and its neighbors (gray circles) from each side. The output of the NN is
an “equalized” sample.

where c k are from the alphabet of 64- or 128-quadrature-
amplitude modulation (QAM) symbols. The transmission is
implemented in a burst mode, where the full temporal support
of a single symbol (burst) is 9.8 ns. Details of the system param-
eters used in our work are in [8,9]. The achievable data rates are
63 Gbit/s and 74 Gbit/s for 64- and 128-QAM, correspond-
ingly, accounting for the dispersion-broadening memory to the
burst length.

In this work we use the fast NFT and inverse NFT (INFT)
algorithms from [21] for the NF signal processing: these meth-
ods have signal processing complexity of order O(nlog2n),
where n is the number simulation samples, and second-order
accuracy with regard to sample size. The algorithms demon-
strate the highest ratio between performance and accuracy
characteristics. It is worthwhile mentioning that as shown in
[9], the performance of the NFT-based communication system
is determined by the interplay between in-line noise and the
“processing” noise arising from the imperfectness of finite-
precision NFT procedures. The impact of processing noise is
especially pronounced for high signal powers. At the same time,
for low signal powers, the main corruption source is amplified
spontaneous emission (ASE) noise. So our equalization meth-
ods deal with both the processing and in-line noise-induced
corruptions simultaneously.

We start with estimating the performance of our NFT-based
communication system without the NN equalizer for 64- and
128-QAM. As seen in Fig. 3 (purple curves), using the hard
decision (HD), we obtain BER values that are much higher than
the HD forward error correction (FEC) threshold for signal
powers around the optimal value and for both data rates.

One solution is to improve the classification stage by using
ML techniques. In our previous work [15], we improved the
performance of a similar NFT-based optical transmission
system by using several ML methods for the classification of
received symbols. It was demonstrated that the employment
of ML techniques makes it possible to improve BER of the
system by 30% for 16-QAM symbols. Therefore, first, we apply
the ML technique for the classification of received symbols
to benchmark the achievable improvements. We utilize the
feed-forward NN to create the optimum boundaries ensuing
from the distribution of the received symbols. Figure 1 shows
the “constellation classification strategy” for the exact point
where we apply ML in our scheme. We train the NN by provid-
ing the received symbols as input and the transmitted ones as
labels. Then, the trained NN classifies newly received symbols
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Fig. 3. BER versus power dependence for propagation distance
1000 km, using hard decision (purple curves), classification of received
symbols by NN (yellow curves), or applying NN for equalization of
the received spectrum (blue curves) for two data rates of 63 Gbit/s
(solid lines) and 74 Gbit/s (dashed lines). Horizontal black dashed line
represents HD FEC threshold.

in order to increase performance of the system, reducing BER
by more accurate decision boundaries. For classification, we
use a feed-forward fully connected NN network that consists
of three hidden layers with 64 nodes in each layer, with a leaky
rectified linear unit (ReLU) activation function. For the training
and validation set, we use 7.7× 105 and 6.4× 104 symbols,
respectively. Results presented in Fig. 3 are obtained by classify-
ing a test set of 3.4× 106 that was not used during the training
process. We would like to emphasize that in this approach,
NN is used to provide more accurate decision boundaries but
without shifting the positions of received symbols itself.

The results of this symbol classification are presented in Fig. 3
by yellow lines for both data rates. It can be seen in the figure that
performance improvement is insignificant and can be linked
in this case to slight constellation rotation and scaling, which
can be easily removed with simple methods. As the classifica-
tion of symbols cannot provide desirable improvement that
would decrease the BER below the HD FEC threshold in the
considered case, we turn to the main point of our Letter: the
application of NN-based equalization to the received nonlinear
spectrum itself. The method is illustrated schematically in Fig. 2.
For details on how we apply the ML in our new receiver scheme,
see Fig. 1, where the nonlinear spectrum waveform equalization
strategy is marked with yellow lines. So we use the received con-
tinuous nonlinear spectrum as an input for the NN in order to
equalize the nonlinear spectrum. For such a regression task, we
employ a fully connected NN that has the same number of hid-
den layers and nodes as the classification task described earlier:
three hidden layers with 64 nodes in each layer. We have chosen
the leaky ReLU because it provides better performance than the
ordinary ReLu and hyperbolic tangent activation functions.
Real and imaginary parts of each spectrum point at the input
(output) are considered as separate nodes [see the left (right) part
of Fig. 2]. The NN was trained using the Nesterov-accelerated
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Fig. 4. BER as a function of the number of neighbors (taps) used in
the NN equalization for propagation distance of 1000 km, where the
power was taken in the vicinity of optimal value in−18 dBm.

adaptive moment estimation (NADAM) [22] optimization
algorithm. Training was performed on 1.2× 104 realizations of
in-line noise; another 1× 103 noise realizations were used as the
validation set. To present results in the Letter, we use a distinct
test set that consists of 5.2× 104 in-line noise realizations not
used in the training step. The training is performed for a data set
consisting of received and initial spectra samples at each signal
power separately.

As we mentioned above, the physical noise and numerical
processing noise both contribute to effective crosstalk and
lead to emerging correlations between the nonlinear spectrum
components. An important part of our approach is that this cor-
relation between the nonlinear spectrum components is taken
into account, such that we perform a multi-tap equalization (see
the left side of Fig. 2).

In particular, on the preprocessing stage, we create samples
for NN training that consist of an initial element (blue circle in
blue processing window in Fig. 2) from a nonlinear spectrum
and its nearest neighbors (gray circles in processing window).
Then, these new training samples are treated as independent.
Before training the NN, all training samples from different noise
realizations were interleaved and then shuffled. We consider
here 10 nearest neighbors of r (ξm) from both sides (i.e., 21 taps
in total) of the received r -spectrum to equalize the central sam-
ple. To identify the optimal number of neighbors, we studied
the dependence of our equalizer performance on the number
of neighbors. We trained the NN and computed the respective
BER values for the number of neighbors varying from zero to 30
in total, i.e., up to 15 from each side of the sample of interest. As
shown in [9], the correlation between the nonlinear spectrum
components rapidly decays; therefore, one might expect to see
an improvement in the equalizer performance as the considered
neighbors increase up to the actual effective correlation length
produced by all channel distortions. Beyond this point, process-
ing a larger window only adds more noise into the system, hence,
degrading the performance. In Fig. 4, the BER first decreases
with the number of neighbors; however, there is a slight growth
of BER after seven and 10 neighbors for 74 and 63 Gbit/s trans-
mission rates, respectively. We fixed the number of neighbors to
10 because such a configuration provides optimal performance
for 63 Gbit/s. For 74 Gbit/s, our simulations show almost equal
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Fig. 5. Received constellations without (a) and with (b) ML-based
spectrum equalization processing for the launch power of−18.5 dBm
of 74 Gbit/s transmission.

BER for seven and 10 neighbors; therefore, we picked the num-
ber of neighbors to be the same for both data rates. The NN with
the defined number of neighbors was trained using the received
nonlinear spectrum r (ξ) and initial spectrum as a target, and
the procedure was done for every signal power and data rate
separately. Then, the trained NN was applied to the test dataset
(not used in the training) and the performance after the NN
estimated in terms of BER, using an HD scheme. The results are
presented in Fig. 3 by blue lines for both data rates. It can be seen
in the figure that the improvements of BER for optimum powers
are 8.6 and 5.75 times for 63 Gbit/s and 74 Gbit/s, respectively.

To analyze the impact of the size of the NN on performance,
we varied the number of hidden layers and nodes in them.
For optimal power of 74 Gbit/s transmission, performance of
the NN consisting of two hidden layers with 64 nodes in each
reduced by about 25% in comparison to the one described
earlier, with a BER value lower than the HD FEC threshold
and equal to 4.3× 10−3. On the other hand, by increasing the
number of nodes in the hidden layers of the three-layer NN up
to 96, we got only 6% BER improvement with a significant rise
in computational complexity.

Additionally, to demonstrate the effect of the NN, in Fig. 5,
we present the received 128-QAM constellation in (a) the
absence and (b) presence of the NN equalizer with optimal
power of−18.5 dBm. The improvement in system performance
is visible in this figure. The BER value for the system without
the NN equalizer is about 2× 10−2, whereas by employing
the NN equalizer, it can be pushed below the HD FEC thresh-
old and equals 3.5× 10−3. We note again that the NN-based
nonlinear spectrum equalization can be useful for both types of
noises in NFT systems: processing and ASE noise. This is the
important benefit of the NN equalizer in comparison to more
traditional ones, as the NN can target several degradation factors
simultaneously.

We applied the NN-based equalizer at the receiver to improve
the performance of the NFT-based optical transmission system.
It is shown that by using this method, we can achieve almost
six times BER improvement at 74 Gbit/s for the propagation
distance of 1000 km at the optimal signal power. We believe
that the proposed equalization method can be applied to other
similar NFT-based optical communication systems, targeting
different types of in-line and NFT computation-induced distor-
tions, and also can be useful in increasing the accuracy of NFT
procedures in general.
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