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Abstract 
 

 

Long nanowires formed by ca. 800 guanine tetrads (G4-wires) are studied in phosphate buffer 

containing sodium cations. Their room temperature optical properties are compared to those 

of the monomeric chromophore 2-deoxyguanine monophosphate (dGMP). When going from 

dGMP to G4-wires, both the absorption and fluorescence spectra change. Moreover, the 

fluorescence quantum yield increases by a factor 7.3 whereas the average fluorescence 

lifetime increases by more than two orders of magnitude indicating emission associated with 

weakly allowed transitions. The behavior of G4-wires is interpreted in the light of a 

theoretical study performed in the frame of the exciton theory combining data from molecular 

dynamics and quantum chemistry. These calculations, carried out for a quadruplex composed 

of three tetrads, reveal the existence of various exciton states having different energies and 

oscillator strengths. The degree of delocalization of the quadruplex Franck-Condon excited 

states is larger than those found for longer duplexes following the same methodology. The 

slower excited state relaxation in G4-wires compared to dGMP is explained by emission from 

exciton states, possibly limited on individual tetrads, whose coherence is preserved by the 

reduced mobility of guanines due multiple Hoogsteen hydrogen bonds. 

 

 

Keywords: G-quadruplex, guanine wires, DNA fluorescence, excitons 
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1. Introduction  

The use of DNA components as building blocks in non-conventional materials for 

applications in molecular electronics and optoelectronics is a rapidly emerging field.
1,2

 In this 

respect, guanines occupy a privileged position due to their ability to self-assemble into 

nanoscale structures. Long guanine wires (G4-wires), formed by folding a few thousand bases 

single poly(dG) strand, present a high potential for use in the field of nanotechnologies.
3,4

 G4-

wires are typical examples of G-quadruplexes in which the repetitive unit is a tetrad 

composed of four guanines linked together by Hoogsteen hydrogen bonds (Figure 1). Both 

monomeric nucleic acids and numerous guanine rich DNA sequences, including those 

encountered at the ends of human chromosomes (telomeres), give rise to a variety of four-

stranded structures. G-quadruplexes are known to play an important role in gene expression 

and constitute targets for cancer therapy.
5-9

  

Characterizing the optical properties of guanine nanowires and disentangling the 

various factors that may affect them is a prerequisite for the integration of such systems in 

optoelectronic devices. Although thousands of publications have been dedicated to structural 

and functional aspects related with G-quadruplexes, very little is known about their electronic 

excited states.  

Changes in the electronic absorption spectra are currently used in a phenomenological 

way for monitoring the formation of G-quadruplexes.
10

 A qualitative interpretation of these 

changes was recently proposed by comparing single-stranded and four-stranded 

d(TGGGGT).
11

 The observed spectral differences were explained in terms of vertical and 

horizontal coupling, in analogy with H and J aggregates, respectively. But so far, this 

explanation was not rationalized via theoretical calculations.  

The fluorescence properties of G-quadruplexes are much less explored than their 

absorption behavior. Three groups reported that self-association of guanine rich DNA strands 
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leads to an increase of the fluorescence quantum yields.
11-14

 Another trend which also 

emerged from the time-resolved studies is that self-association of guanines results to a 

slowing down of the fluorescence decays.
12

 
11,13,15,16

 However, a quantitative comparison of 

the above mentioned observations is delicate. This difficulty is related to the systems studied 

as well as to the experimental conditions used by each group. For example, some data were 

obtained simply by mixing guanine single strands without a clear proof that quadruplex 

structures were indeed formed.
12,15

 Furthermore, the comparison between the optical 

properties of short and long wires is difficult because the former were stabilized by sodium 

ions,
11

 whereas the latter were either empty or filled with potassium ions.
13

 Metal ions are 

known to affect the quadruplex structure
17

 and, consequently, the coupling between electronic 

transitions of the guanine moieties. As a result, the properties of the G-quadruplex excited 

states and their relaxation should depend on the presence and the type of metal ions.  

Here we present an experimental and theoretical study dealing with the optical 

properties of guanine quadruplexes in the presence of sodium cations. The choice of Na
+
 was 

made in order to compare the results with those obtained previously under similar conditions 

both for quadruplexes
11

 and for DNA duplexes.
18-22

 The objectives of the study are to 

determine the absorption and fluorescence properties of long guanine wires at room 

temperature and to provide the first theoretical description of the electronic excited states of 

guanine quadruplexes. Long G4-wires are suitable models for understanding the specific 

behavior arising from tetrad formation and allow comparison with theoretical work. In 

contrast, short quadruplex structures, as for example d(TGGGGT)4 or those formed by the 

telomeric sequence d(TTAGGG), in addition to guanines, contain other bases which 

contribute to photon absorption and photon emission and blur the intrinsic properties of the 

tetrad core. 
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The experimental work is carried out for long guanine wires composed of ca. 800 

tetrads dissolved in phosphate buffer containing Na
+
 (0.13 mM). The fluorescence decays of 

the G4-wires were obtained by time-correlated single photon counting (TCSPC). We stress 

that the fluorescence experiments were performed following specific protocols developed for 

DNA helices.
23

 This is a key point for obtaining reliable data for systems absorbing in the UV 

spectral domain and characterized by extremely low fluorescence quantum yields (<10
-3

).  

The modeling concerns the excited states populated directly upon photon absorption 

(Franck-Condon states). It is carried out for short quadruplexes composed of three tetrads, 

d(GGG)4. We follow a methodology developed recently for the study of DNA duplexes
24,25

 in 

the frame of the exciton theory.
26

 The excited states of the quadruplex are linear combinations 

of the excited states associated with each monomeric guanosine chromophore composing the 

system. In our calculations we take into account structural disorder by considering a multitude 

of conformations derived from molecular dynamics simulations. We stress that such 

calculations, combining exciton theory with molecular dynamics simulations, cannot be 

performed for wires containing hundreds of tetrads. 

The paper is organized as follows. First we detail the experimental and computational 

methods used in the study (Section 2). The experimental results are presented in Section 3, 

followed by the results of the calculations (Section 4). Then, we compare the experimental 

and calculated features of the absorption spectra and discuss the relaxation of the excited 

states. We finish with some concluding remarks outlining future developments. 

2. Experimental and Computational Details 

2.1 Materials and Methods 

Long monomolecular G4-wires were prepared as previously described.
3
 The 

procedure consists of two main steps: the enzymatic synthesis and purification of continuous 

2800 base dG strands, and folding of the purified G strands into G4–wires structures. The 
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structures were characterized by AFM, UV spectroscopy, circular dichroism as well as by the 

sensitivity to enzymes.
3,27,28

 

AFM was performed on molecules adsorbed on mica surfaces on which binding of 

nucleic acids is promoted by magnesium cations.  Here 20 μl of DNA sample in 2 mM of 

Tris–acetate buffer (pH 7.4), containing 2 mM of MgCl2, were incubated on freshly cleaved 

muscovite mica plates for 2 to 5 min, washed with distilled water, and dried with nitrogen gas. 

AFM images were obtained with a Solver PRO atomic force microscope (NT–MDT, Russia) 

in a noncontact (tapping) mode using the silicon/gold-coated cantilevers (NT–MDT), 130 µm 

long with a resonance frequency of 119 to 180 KHz. The images were „„flattened‟‟ (each line 

was fitted to a second-order polynomial and then subtracted from the image line) by the AFM 

image processing software. A typical AFM image of the synthesized G4-wires is shown in 

Figure 2. As seen from the image, the preparation procedure yielded G4–DNA wires, with a 

uniform morphology and a relatively narrow length distribution. The average contour length 

of the wires is approximately equal to 200 nm. The correlation between the total amount of 

nucleotides in the poly(dG)-strand and the contour length of the folded structures corresponds 

nicely with a 4-intramolecular folding of the strand into the wire.  

For the spectroscopic studies, G4-wires were dissolved in phosphate buffer (10 mM 

NaH2PO4, 10 mM Na2HPO4, 0.1 M NaCl; pH 7.4). Ultrapure water was produced by a 

MILLIPORE (Milli-Q Synthesis) system. The absorbance of the samples was adjusted to 0.1 

per cm for both steady-state and time-resolved fluorescence measurements. 

Steady-state absorption and fluorescence spectra were recorded with a Perkin-Elmer 

Lamda 900 spectrophotometer and a SPEX Fluorolog-3 fluorimeter, respectively, using 1cm-

optical path quartz cells. Fluorescence spectra over the whole UV-visible spectral region were 

recorded in two steps: between 250 and 450 nm without any optical filter on the emission 

detection, then between 400 and 700 nm using a Schott GG 385 filter to eliminate 
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contribution from the second order of the scattered excitation beam, Raman scattering and the 

UV part of the G4-wire fluorescence. Fluorescence spectra were corrected from the 

instrumental wavelength-dependent response after subtraction the signal arising from the pure 

solvent. The fluorescence quantum yield of the G4-wires was determined using thymidine-5‟-

monophosphate (TMP) in pure water [f =  (1.54 ± 0.11)x10
-4

] 
29

 

Fluorescence decays were measured by TCSPC using a Becker & Hickl GmbH PC 

card. The excitation source was the third harmonic (267 nm) of a mode-locked Ti-Sapphire 

laser (Coherent MIRA 900), delivering 100-fs pulses with a repetition rate of 4.75 MHz. A 

Schott WG 295 filter was placed in front of a SPEX monochromator. The detector was a 

microchannel plate (R1564 U Hamamatsu) providing an instrumental response function of 60 

ps (fwhm). A Glan Thomson prism at the magic angle was placed at the excitation side. The 

average laser power (0.1 mW) was measured with a Melles Griot broadband powermeter. The 

irradiated area on the surface of the cell was ca. 0.2 cm
2
 leading to corresponding to a pulse 

intensity of 2.4kW/cm
2
. Solutions were contained in a 10 mm x 10 mm quartz cell and 

continuously stirred. Successive recordings with the same sample gave identical decays which 

were eventually merged to decrease the signal–to-noise ratio. Such a procedure allowed us to 

check that the measured signals were not altered during the measurements due to 

accumulation of photoproducts (add Figure?) 

2.2 Theoretical methodology 

The ground state conformations of 3xG4 were extracted from molecular dynamics 

simulations including explicitly solvent and sodium counter-ions.
24

 The quadruplex was 

constructed on the basis of the crystal structure (pdbid 352D) using four single strands 

d(GGG) conformation and was neutralized with 8 Na
+
 ions placed by AMBER‟s LEAP 

module of outside the tetramer and solvated with 2000 TIP3P water molecules in a truncated 

octahedral box. Molecular dynamics simulations were performed at constant temperature (300 
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K) and pressure (1 bar) using the Berendsen algorithm.
30

 An integration time step of 2 fs was 

used and all bond lengths involving hydrogens were constrained using SHAKE.
31

 Long-range 

electrostatic interactions were treated using the particle mesh Ewald (PME) approach
32

 with a 

9 Å direct space cut-off. The non-bonded pair-list was updated heuristically and the center of 

mass motion was removed every 10 ps during the simulation. Initially, the water molecules 

and ions were relaxed by energy minimization and allowed to equilibrate at 300 K around the 

fixed DNA for 100 ps at constant volume; the entire system was then heated from 100 to 300 

K during 100 ps and equilibrated during 50 ps with harmonic restraints of 5.0 kcal/mol/Å
2
 on 

the solute atoms at constant volume. Subsequently, the simulation was continued at constant 

pressure; the restraints were gradually removed over a period of 250 ps and an unrestrained 

simulation followed for over 15 ns. The coordinates were saved every 1 ps. The last 

nanosecond was used for the further study. 100 snapshots spaced by 10 ps were selected. In 

order to minimize bond length and valence angle distortions the snapshots were minimized in 

AMBER for 1000 cycles before being used for Poisson-Boltzmann calculations of the 

electrostatic energy. Non-linear solutions of the Poisson-Boltzmann equation were obtained 

with the DELPHI program (version 2.1).
33

 As in our previous calculations,
33

 an ionic strength 

of 0.145 was employed. Calculations involved 145 grid points and 80% of the box filled by 

the molecule, corresponding to 4.2 grid points/Å. The internal dielectric constant was taken as 

2, and the external value as 80. The solvent accessible surface of the molecule was defined 

using a probe radius of 1.4 Å.  

The excited states of the quadruplex were calculated in the frame of the exciton 

theory. The detailed formalism is described in reference 
34

. We constructed the Hamiltonian 

matrix taking into account the two close * lying transitions of guanine S0  S1 and S0  

S2.  
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The excitation energy E
i
m corresponding to the transition S0  Si of a chromophore m 

within the quadruplex is given by: 

 
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(1) 

Term (I) represents the excitation energy of free monomer m from its ground to its i
th

 

electronic state. Term (II) corresponds to the interaction energy of the system in which 

monomer m is in its i
th

 state and all others in their respective ground states. It is computed as 

the electrostatic energy of the system in water by solving the non-linear Poisson-Boltzmann 

equation with AMBER atomic charges. In this calculation, atomic charge distributions 

associated with the excited states of the monomers were used. Finally, term (III) is the energy 

of the ground-state system; it is calculated by the Poisson-Boltzmann method. 

Atomic charges for the excited states were constructed from ab initio calculations. We 

described the change in the monomers‟ electronic wavefunction upon excitation as a set of 

atomic charge differences, computed by subtraction of the CASSCF/RESP charges on the 

atoms of the ground state molecule from those corresponding to the excited state. The active 

space choose for CASSCF/RESP calculation is 14 electrons in 12 molecular orbitals. All the 

valence pi-orbitals and the lone pairs orbitals of the heteroatoms were included. The basis set 

used is cc-pVZ. The charges for the excited states of guanine were obtained by e the 

corresponding charge difference to the standard AMBER ground-state charges. This should 

account for the reorganization of the electronic system of the monomers upon excitation, 

while retaining the generality of the AMBER force field, which is very well suited to the 

study of nucleic acids.
35

 The calculation procedure is described in detail in the appendix of 

reference 24. The terms i

m
  were given constant values, 36 000 cm

-1
 and 37 500 cm

-1
, derived 
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from the fits of the experimental absorption spectra of dGMP in aqueous solution with log-

normal functions.
34

 

The dipolar coupling was calculated using the atomic transition charge distribution 

model, according to which the off-diagonal terms are subjected to a dipolar development.
36

 

The resulting molecular transition dipoles 0

m

k

m
 r 


 are then decomposed onto the 

atomic orbitals of the molecule, in the framework of the INDO approximation.
37

 Atomic 

charges of the two transitions were derived from quantum chemistry calculations preformed 

on 9-methylguanine (INDO).
34

 They were rescaled so that the computed transition moments 

to match the experimental transition moments, 3.31 D for each transition. Couplings 

corresponding to all guanine pairs of  the quadruplex were taken into account. 

Diagonalization of the exciton matrix corresponding to a given quadruplex 

conformation yields the eigenstates of the system which are linear combinations of the 

wavefunctions <n> corresponding to the monomer transitions 




N

n

nnk
Ck

1

, . Since the 

studied quadruplex contains 12 guanines with two transitions each, it has twenty four 

eigenstates <k>, whose energy increases from <1> to <24>. 

3 Experimental Results 

3.1 Steady-sate spectra 

Figure 3 shows the normalized steady-state absorption and fluorescence spectra of G4-

wires together with those of dGMP. Various parameters allowing a comparison between the 

spectra of the wires with those of dGMP are summarized on Table 1. The spectra of Figure 3 

are presented on a wavenumber scale so that to provide information about the energy of the 

excited states related to photon absorption and photon emission and allow comparison with 

the results of the calculations. In order to keep the link with the directly observed 

experimental data, we also give below some spectral characteristics in wavelength. 
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Figure 3 

 

The spectra in Figure 3 were obtained for the wires dissolved in 10 mM sodium 

phosphate buffer (pH = 7.4) containing 0.1 M NaCl. These spectra remain practically 

unaltered when the NaCl concentration varies from 0.05 to 2.5 M or when the pH ranges from 

6.3 to 8.5.  

 

Table 1 

 

The absorption spectrum of the wires exhibits three striking differences with respect to 

the spectrum of the monomeric chromophores. First, the shoulder around 36000 cm
-1 

(ca. 275 

nm) disappears and the spectral width is reduced from 7100 cm
-1

 to 6600 cm
-1

 (full width at 

half maximum, fwhm). Moreover, a hyperchromism appears at the red wing of the spectrum 

which is typical of the quadruplexes formation.
10

 Finally, the maximum is blue shifted from 

253 to 251 nm corresponding to an energy difference of 315 cm
-1

. Interestingly, no such shift 

is observed for the short quadruplex d(TGGGGT)4.
11

 In general, formation of G-quadruplexes 

composed by short oligomers gives rise to a decrease of the maximum molar extinction 

coefficient. Consequently, their melting results to an increase of the absorbance around the 

peak of the spectrum. As the long G4-wires studied here are prepared by biochemical methods 

in solution and they are extremely stable as a function of temperature, it has not been possible 

to determine the absolute molar absorption coefficients (). We used  values normalized 

relative to the maximum in order to determine the barycenter B = (E·)/, where E is the 

excitation energy. The B value found for the dGMP and the wires are 39100 and 39670 cm
-1

, 

respectively, revealing an overall hypsochromic shift of 570 cm
-1

 for the quadruplex. 
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On a wavelength scale, the fluorescence spectrum of the wires recorded upon excitation 

at 266 nm peaks at 353 nm, whereas that of dGMP is located at 334 nm. A red shift, though 

smaller (6 nm instead of 19 nm), was also reported for the d(TGGGGT)4 quadruplexes
11

. On a 

wavenumber scale (Figure 3b), the difference in the emission maxima between the 

monomeric chromophores and the wires is 2250 cm
-1

. In analogy with the absorption spectra, 

we determined the barycenters of the emission ones: 25500 cm
-1

 for the wires and 23900 cm
-1

 

for dGMP. This means that, despite the fact that the emission maximum of the wires is 

located at lower energy with respect to the monomer, on average they emit photons of higher 

energies. It is worth-noticing that the red tail characterizing of the guanosine emission
38

 is 

weaker in the case of the wires. For example, at 18000 cm
-1

 (ca. 555 nm), the relative 

intensity of the spectrum compared to that at the maximum is 29% for dGMP but it dwindles 

down to 8% for the wires. The width (fwhm) of the wire fluorescence spectrum (8300 cm
-1

) is 

smaller than that of dGMP (8950 cm
-1

) by 650 cm
-1

. The fluorescence quantum yield of the 

wires is (9.5 ± 0.1)x10
-4

, to be compared with the value of (1.3 ± 0.1)x10
-4

 determined for 

dGMP for the same excitation wavelength (265 nm). 

 

Figure 4 

 

3.2 Fluorescence decays 

The fluorescence decays of the wires recorded at 340 and 450 nm are shown in Figure 

4. At both wavelengths, the signal is clearly longer than the instrumental response function 

given by the Raman line of water at 294 nm. Three time constants are needed in order to fit 

the decays. The results of the fits with tri-exponential functions aiexp(-t/i) are presented on 

Table 1. We also present on Table 1 the weight corresponding to each time constant pj = ajj/ 

(aii) as well as the average lifetime <t> = aii. The shortest time constant 1 amounts to 
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31.6 and 25.8 ps at 340 and 450 nm, respectively. The 2 values are about one order of 

magnitude higher (272 and 302 ps). Finally, a long component equal to 2.0 ns is detected at 

both probed wavelengths. The average lifetime is 132 ps at 340 nm and 165 ps at 450 nm. 

Taking into account the relative intensities of the fluorescence spectrum at these two 

wavelengths, we determine a global average lifetime of 139 ps. Following the same procedure 

for dGMP, whose decays also vary with the emission wavelength,
38

 we obtain an average 

lifetime of 0.52 ps. By considering the fluorescence quantum yields of the two systems, we 

evaluate the corresponding average radiative lifetimes: 4 ns for dGMP, which is typical of a 

strong transition, and 146 ns for the wires, which suggests emission associated, at least partly, 

to weak transitions.  

 

Table 2 

 

4 Theoretical Results 

4.1 Ground state geometry 

 

Figure 5 

 

Figure 5 shows top and side views corresponding to the average conformation of the 

d(GGG)4 quadruplex. The sodium cations are located in the central cavity where they can 

move freely. We observed that structural parameters obtained for the d(GGG)4 quadruplex by 

molecular dynamics simulations are very similar to those reported for the d(TGGGGT)4 

crystal by X ray measurements.
39

 For example, we determined for d(GGG)4 an average helical 

rise of 3.29 Å and a helical twist of 26.4° with the standard deviation (rmsd) of 0.18 and 

5.72°, respectively. The corresponding values reported for the crystal are 3.30 Å and 27.5°. It 
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is worth-noticing that the rise corresponding to the quadruplex structure is larger and the twist 

is smaller compared to those of the duplex (dG)18·(dC)18 , which are 3.05 Å and 30.8°, 

respectively.
40

 We also remark that the quadruplex, despite the fact that it is composed of only 

three tetrads, shows reduced fluctuations (rmsd = 0.18) of the helical rise compared to that of 

the much longer duplex (rmsd = 0.36). Reduced fluctuations are also observed for the base-

pair opening and the buckle, which corresponds to contrarotation around the short axes of the 

base pair. The rmsd values found for buckle and base-pair opening in d(GGGG)4 are 7.9° and 

2.3°, respectively, against 9.8° and 3.2° for (dG)18·(dC)18. The largest amplitude fluctuations 

in the quadruplex are related with the twist between the tetrads. 

4.2 Properties of the Franck-Condon Excited states  

By following the methodology described in Section 2.2 we determined the properties 

of the Franck-Condon excited states corresponding to each one of the 100 conformations of 

the quadruplex d(GGG)4. We can distinguish two ensembles of exciton states. Half of them 

are built on the S1 state of the guanosine chromophore and the other half on the S2 state, the 

former having lower energy than the latter. 

 

Figure 6 

 

Figure 6 shows the oscillator strength f associated with each one of the 24 excited 

states averaged over 100 conformations. In contrast to the monomer for which the S0  S1 

and S0  S2 transitions have quite similar oscillator strength, 0.19 and 0.21, respectively, in 

the case of the quadruplex the f values exhibit important dispersion. This picture contrasts 

with the ideal H or J aggregates, in which the oscillator strength is concentrated in the upper 

or the lower eigenstate, respectively. The existence of both in plane (within the tetrads) and 

out of plane (along the stacks) electronic couplings results in a more complex pattern. We 
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remark in Figure 6 that eight excited states are characterized by f values higher than 0.1. For 

six among them f is comprised between 0.01 and 0.1, and the remaining appear to be 

completely “dark” (f<0.01). 

 

Figure 7 

 

The distribution of the oscillator strength corresponding to the electronic transitions of 

100 conformations, normalized per quadruplex, is presented in Figure 7, together with the two 

transitions of dGMP. In other terms, the plot in Figure 7 corresponds to the theoretical 

absorption spectrum of d(GGG)4. The total oscillator strength of the quadruplex transitions 

(4.6) is slightly lower that that of the constitutive monomers (4.8), indicating an overall 

hypochromism (4%). The barycenter of the calculated quadruplex spectrum (38940 cm
-1

) is 

hypsochromically shifted by 350 cm
-1

 with respect to that of the monomer (38590 cm
-1

). The 

hypsochromic shift concerns both parts of the 3xG4 spectrum, associated with the S1 or the S2 

states of guanosine. For both ensembles, several very weak transitions are located at energies 

lower than that the corresponding transition of the monomeric chromophore. This is shown in 

the inset of Figure 7 focusing on the red side of the spectrum.  

 

Figure 8 

 

We quantified the degree of delocalization of the exciton states by the participation 

ratio PR=1/Lk which represents the number of coherently coupled chromophores:
41,42

 

  










m  monom er i  

i

mk,
(C

2

states

2

k
)L . 

The sum within the square brackets represents the contribution to the eigenstate <k> of 
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different electronic states belonging to the same guanine. The average participation ratio, 

corresponding to each one of the 24 eigenstates of d(GGG)4 is shown in Figure 8. The PR 

values range from 5.4 (for <k> = 18) to 11.1 (for <k> = 24). In order to compare the degree of 

delocalization (D) of the quadruplex excited states with those determined for DNA duplexes 

according the same methodology,
24,25,43

 we divide the PR values by the number of bases 

composing the system. Thus, we find that all excited states of d(GGG)4 are delocalized over at 

least 45% of the guanines composing the quadruplex; the upper D value is as high as 95%. 

The lower, upper and average D values determined for the quadruplex d(GGG)4 as well as for 

the double strands (dG)10·(dC)10, (dA)10·(dT)10 and (dAdT)5·(dAdT)5 are gathered on Table 3. 

It is clear that the excited states of the quadruplex are by far more delocalized than those of 

the duplexes despite the fact that the quadruplex is composed of much shorter strands 

(trimers) compared to the duplexes (decamers). This is understandable because, as explained 

in 4.1, the quadruplex structure undergoes weaker amplitude structural fluctuations leading to 

reduced off-diagonal disorder.  

 

Table 3 

 

Figure 9 shows the topography of two typical eigenstates of the quadruplex, <11> and 

<1>, both built on the S1 state of guanosine. The former is associated with the strongest 

oscillator strength and it is located around 37500 cm
-1

, eg. close to the excitation conditions 

used in the experiments (265/267 nm). The latter is the lowest in energy eigenstate and is 

likely to be involved in emission. For the eigenstate <11> we observe a relatively uniform 

distribution of the coefficients Ci, which are comprised between 0.06 and 0.13. In the case of 

the eigenstate <1>, the Ci values show larger variations, ranging from 0.03 to 0.17.  
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Figure 9 

 

5. Discussion 

The experimental results presented in Section 3 revealed remarkable differences 

between the optical properties determined for G4-wires filled with Na
+
 and the monomeric 

chromophore GMP. These differences concern both the shape of the absorption and 

fluorescence spectra and, in a more striking way, the fluorescence decays which are much 

slower in the case of the wires, the shortest time-constant 1 being ca. 30 ps. Although long-

lived fluorescence components have been detected for various DNA duplexes under similar 

experimental conditions, the 1 values do not exceed a few ps.
19,44,45

 The same is also true for 

the short quadruplex d(TGGGGT)4, for which 1 is ca. 2.6 ps.
11

 The above observations 

reveal that arrangement of guanines in long four-stranded structures alters dramatically the 

properties of their electronic excited states. Our calculations provide useful insights in the 

specific behavior of the long G4-wires.  

The molecular dynamics simulations showed that conformational motions, with the 

exception of twist, have relatively weak amplitude in d(GGG)4. Increasing the number of 

tetrads from 3 to ca. 800 is expected to further reduce structural disorder. Consequently, the 

collective behavior found for the Franck-Condon excited states in d(GGG)4, where edge 

effects are important, should more pronounced for the G4-wires. 

In the calculation of the excited states we considered only dipolar coupling. However, 

orbital overlap interactions, which are difficult to compute for large multichromophoric 

systems, were shown to play an important role in short single and double DNA strands.
46-51

 

Despite this limitation, the theoretical absorption spectrum in Figure 7 reproduces the main 

features of the experimental spectrum (Figure 3a). Both spectra are hypsochromically shifted 

with respect to that of the monomeric chromophore. The barycenter of the experimental 
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spectrum of G4-wires is located 670 cm
-1

 at higher energy compared to that of dGMP. The 

same trend but smaller in amplitude (350 cm
-1

) is found for the spectrum calculated for 

d(GGG)4. We note that a size dependent blue shift was reported for the experimental 

absorption spectra of (dA)n·(dT)n, the largest value corresponding to the longest duplex.
21

 

Moreover, the seven eigenstates of d(GGG)4 lying at lower energy than the S1 state of 

guanosine (inset in Figure 7) could account for the red tail of the experimental spectrum. 

According to the calculations, these low lying states are devoid of oscillator strength. 

However, in a real system, due to vibrational coupling, they may borrow oscillator strength 

from the close lying bright states. This mechanism should result in a decrease of the shoulder 

corresponding to S0  S1 transition and in the appearance of the red tail observed in the 

experimental spectra (Figure 3a). 

The calculations concern only the Franck-Condon exciton states, populated directly by 

photon absorption. As a general rule, two competing processes may take place before 

emission: intraband scattering and localization of the excited states. Intraband scattering, eg. 

internal conversion among exciton states, brings very rapidly the system to the bottom of the 

exciton band. This process was shown to occur on the femtosecond time-scale for DNA 

duplexes 
20-22,44

 as well as for the four stranded d(TGGGGT).
11

 Emission may originate from 

low lying states corresponding to weakly allowed transitions. However vibrational and 

conformational motions tend to reduce the spatial extent of the excited states. Consequently, 

emission may originate from excited states less delocalized than the Franck-Condon ones, 

even from monomeric chromophores. It is also possible that an excited monomeric 

chromophore gives rise to an excimer corresponding to the minimum of the potential energy 

surface of an excited dimer. 

The fluorescence decays of dGMP follow complex kinetics
38

 attributed to emission 

from different regions of the potential energy surface of the S1 state (*).
52

 But the excited 
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state relaxation is ultrafast, the average lifetime not exceeding 1 ps.
38

 It would not be 

surprising if some non-radiative deactivation pathways leading to the ground state through a 

conical intersection
52

 were blocked within the quadruplex, as it happens in low temperature 

glasses
13

 resulting to a lengthening of the fluorescence lifetime. As a matter of fact, the 

intrachromophore structural changes responsible for the ultrafast excited state deactivation 

could be hindered by four Hoogsteen hydrogen bonds linking each guanosine to the others 

(Figure 1) and the stacking of tetrads. In such a case, emission would arise from the Franck-

Condon region. This interpretation is not corroborated by the position of the fluorescence 

maximum of the wires which is red-shifted by 2176 cm
-1

 with respect to that of the dGMP. 

Moreover, if emission originated from excited states localized on individual guanines, the 

radiative lifetime should be close to that observed dGMP (4 ns). Though we cannot rule out 

the possibility that the shortest time constant is related to monomer emission, the data on 

Table 2 indicate that the largest part of the emitted photons is related to quasi dark states. 

Therefore, we conclude that emission from * states localized on individual guanines is not 

the dominant process. 

Excimer emission is characterized by a broad band peaking at lower energy compared 

to the emission of the monomeric chromophore. Such a fluorescence, peaking at 430 nm was 

detected for the d(TGGGGT) single strand but disappears upon formation of the quadruplex.
11

 

Although the fluorescence spectrum of the G4-wires peaks at lower energies compared to that 

of dGMP, its barycenter is located at higher energy; its shape is more symmetrical and its 

width is smaller. All these features do not support the hypothesis of excimer emission.  

Following the above reasoning, we conclude that the dominant emitting species in the 

G4-wires are exciton states. These may be populated either directly from intraband scattering 

or result from further relaxation due to restricted conformational motions during the lifetime 

of the excited state. It is worth-noticing that about half of the emitted photons are associated 
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with a time constant of 2 ns. We are tempted to assign this emission to individual tetrads 

which could behave as a single chromophore. This is supported by the observation that the 

largest amplitude motion found for d(GGG)4 corresponds to the twist between the tetrads. In 

such a scenario, G4-wires would behave a columnar phases in which, after initial ultrafast 

scattering, excitation energy may be transferred along the column axis via a hopping 

mechanism.
53,54

 

5. Remarks and Perspectives 

The work presented here highlighted the collective behavior of the excited states of G4-

wires. Not only the Franck-Condon excited states but also the emitting states are delocalized 

due to restricted conformational motions specific of the quadruplex structure and enhanced by 

the size of the wires. Several questions arise from this first combined experimental and 

theoretical study on the electronic excited states of G-quadruplexes.  

The first question concerns the role metal cations. The fluorescence decays reported here 

for G4-wires filled with Na
+
 are longer (  30 ps) that those obtained for a similar system 

either empty or filled with K
+
 ( < 10 ps).

13
 Systematic measurements with various metal 

cations are necessary in order to elucidate this point. Quantum chemical calculations could 

provide an insight about the way (structural, electronic) that the metal cations interfere with 

the excited states. Furthermore, the influence of the quadruplex size on the optical properties 

needs to be examined. We mentioned that the number of tetrads is expected to reduce 

conformational disorder and enhance the collective behavior of the excited states. However, 

one could imagine the existence of a coherence length. A related question is whether the 

electronic coherence length, determined by delocalization of the excited states along the axis 

of the wires, coincides with the structural coherence length. Finally, it will be interesting to 

characterize the various regimes of excitation transport (intraband scattering, excitation 

hopping) and compare them with processes occurring in columnar liquid crystals formed by 



10/09/2010 

21 

discotic molecules.
54

 Answering the above questions will contribute to design guanine wires 

with improved optical properties which could possibly be integrated in molecular electronic 

devices. 
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TABLE 1: Comparison of the optical properties determined experimentally for G4-

wires and dGMP  

 property dGMP G4-wires wire effect 

absorption 

spectra 

maximum (cm
-1

) 39526 39841  315 

barycenter (cm
-1

) 39100 39670  570 

width (cm
-1

;  fwhm) 7100 6600  500 

red tail (I295nm/Imax) 6% 17%  factor 2.8 

emission 

spectra 

maximum (cm
-1

) 29500 27300  2200 

barycenter (cm
-1

) 23900 25500  1600 

width (cm
-1

; fwhm) 8,950 8,300  650 

red tail (I555nm/Imax) 29% 8%  factor 3.6 

quantum yield (1.3 ± 0.1)x10
-4

 (9.5 ± 0.1)x10
-4

  factor 7.3 

average 

lifetimes 

fluorescence (ps) 0.52 136  factor 261 

radiative (ns) 4 146  factor 36 
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TABLE 2: Parameters derived from the fits of the fluorescence decays of G4-wires with 

tri-exponential functions aiexp(-t/i); pj = ajj/(aii) is the weight corresponding to the 

time-constant j (in ps) and  <> = ai  represents the average lifetime. 

 

 340 nm 450 nm 

a1 0.808 ± 0.020 0.698 ± 0.002 

1 31.6 ± 0.2 25.8 ± 0.4 

p1 0.194 0.109 

a2 0.161 ± 0.004 0.269 ± 0.001 

2 274 ± 2 302 ± 2 

p2 0.335 0.492 

a3 0.031 ± 0.001 0.0330 ± 0.0002 

3 2000 ± 20 2000 ± 40 

p3 0.471 0.399 

<> wires 132 165 

<> dGMP 0.42 0.94 
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TABLE 3: Degree of delocalization (D) determined for the Franck-Condon excited states 

of DNA double and quadruple strands. It is obtained by dividing the participation ratio 

(conformation average) by the number of bases composing the system.  

 

system Dmin Dmax <D>
a
 Ref. 

d(GGG)4 0.45 0.95 057 This work 

(dG)10·(dC)10 0.21 0.59 0.28 
25,43

 

(dA)10·(dT)10 0.20 0.36 0.29 24 

(dAdT)5·(dAdT)5 0.17 0.42 0.27 24 

a)
 double average, first over the conformations and then over the various excited states of the 

system. 
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Figure 1. Schematic representation of the guanine tetrad formed via Hoogsteen hydrogen 

bonding. 
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Figure 2. AFM image of the G4-wires used in the study 
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Figure 3: Normalized absorption (a) and fluorescence (b) spectra of G4-wires (black) and 

dGMP (grey; concentration 10
-5

 M). Vertical bars correspond to the excitation wavelength 

(265 nm) and to the emission wavelengths at which the fluorescence decays were recorded 

(340 and 450 nm). In order to convert the fluorescence spectra from wavelength (to 

wavenumber scale, their intensity I at a given  was multiplied by I
2
. 
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Figure 4. Fluorescence decays of G4-wires recorded at 340 nm (blue) and 450 nm (red) 

following excitation at 267 nm. The apparatus response function is shown in grey. 
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Figure 5. Top and side views of the d(GGG)4 quadruplex structure derived from molecular 

dynamics calculations. Sodium cations (yellow) are located in the central cavity. 
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Figure 6. Oscillator strength associated with each one the 24 eigenstates of the d(GGG)4 

quadruplex. Average values for 100 conformations. 
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Figure 7. Distribution of the oscillator strength calculated for 100 conformations of the 

d(GGG)4 quadruplex. The total oscillator strength is normalized per quadruplex; the width of 

the individual subdivisions is equal to 10 cm
-1

. The S1 and the S2 states of dGMP denoted by 

red bars. Inset: low lying eigenstates associated with weak oscillator strength. 
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Figure 8. Participation ratio representing the number of coherently coupled bases for each 

eigenstate of the d(GGG)4 quadruplex. Average values for 100 conformations. 
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Figure 9. Topographies of two typical excited states calculated for the quadruplex d(GGG)4 

built on the S1 state of the guanosine chromophore. Each tri-nucleotide is represented by a 

specific color. The numbers correspond to the contribution of each base to the exciton state.  
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