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Abstract We compare results from traditional partial wave treatment of deuteron electro-disintegration with
a new approach that uses three-dimensional formalism. The new framework for the two-nucleon (2N) system
using a complete set of isospin–spin states made it possible to construct simple implementations that employ
a very general operator form of the current operator and 2N states.

1 Introduction

The theoretical description of electromagnetic processes is based, like most nuclear physics formalisms, on a
partial wave decomposition of relevant operators. This restricts theoretical methods to systems, where a rela-
tively small number of partial waves are important. Recently formalisms of three-dimensional (3D) description
of few-body have systems and processes have been extensively developed. In this paper we fill a gap in the
development of 3D framework and present an approach that allows for a simple implementation of 3D electro-
magnetic currents. Our final expressions can be translated to a numerical implementation via direct substitutions
of 16-dimensional square matrices representing operators in the 2N isospin–spin space. Finding the matrix
representation of relevant operators is greatly simplified by using symbolic programming in the Mathematica®

[1] software package. Our approach allows us to use a very general operator form of current operators and can
therefore be used for a wide class of processes.

In this paper we apply it to the case of electron induced deuteron disintegration and compare new results
with traditional partial wave calculations. It is worth noting that the methods presented in the following sections
can be applied to the description of other processes, where electroweak probes interact with the 2N system.
Electromagnetic currents can be replaced by any operators acting on the same degrees of freedom; this makes
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our implementations also useful for calculations involving for example muon capture or neutrino induced
deuteron disintegration, performed recently still with the use partial wave expansion [2–4].

2 Formalism and Notation

We adopt a notation in which capital letters describe the total momentum of a two particle system (P = p1+p2),
lower-case letters describe the relative momentum (p = 1

2 (p1 − p2)). Lower indices denote individual parti-
cles and upper indices assign a momentum to a particular quantum eigenstate. The two particle momentum
eigenstates are normalized such that:

〈p′P′ | pP〉 = δ3(p′ − p)δ3(P′ − P), (1)∫
d3p d3P | pP〉〈pP |= 1 (2)

and the transition from the total and relative to the individual momenta can be achieved using:

p1 = p + 1

2
P,

p2 = 1

2
P − p, (3)

where in (3) and in the following we assume that the difference between the proton and neutron mass is
negligible.

We examine the case of deuteron disintegration (e +2 H → e + p + n) where the 2N system is treated
in the non-relativistic approximation. In the initial state the deuteron is at rest (P = 0) and the electron has
a momentum magnitude of qe. We assume that the rest mass of the electron is negligible in comparison to
its kinetic energy; therefore the initial electron energy Ee ≈ qe. The final electron momentum magnitude is
q ′

e, the final energy E ′
e ≈ q ′

e and the electron scattering angle is θe. The magnitude of the three momentum
transferred to the 2N system is

Q =
√

q2
e + q ′2

e − 2qeq ′
e cos θe ≈

√
E2

e + E ′2
e − 2Ee E ′

e cos θe. (4)

We work in a reference frame, where the momentum transfer is parallel to ẑ. In this frame momentum conser-
vation leads to the expression for the total momentum of the proton and the neutron in the final state:

Pf = p1 + p2 = (0, 0, Q). (5)

The magnitude of the final relative momentum can be calculated from the energy conservation:

pf ≡ |pf | = |1

2
(p1 − p2)| = 1

2

√
4m(Ed + Ee − E ′

e)− Q2, (6)

where Ed is the (negative) deuteron binding energy, m is the nucleon mass and the direction of pf can be arbi-
trary. The crucial nuclear matrix element Mμ between the initial deuteron state (where the total momentum
P = 0 and the two particle total angular momentum has a ẑ projection md ) and the final 2N scattering state
can be expressed in terms of the full 2N current operator ( jμ2N ) and the t operator:

Mμ
(
pf ,Pf) ≡ a〈pf Pf ,m1ν1,m2ν2 | (1 + t (E)G0(E)) jμ2N | φd md P = 0〉

= a〈pf Pf ,m1ν1,m2ν2 | (1 + t (E)G0(E))

×( jμ(1)+ jμ(2)+ jμ(1, 2)) | φd md P = 0〉
= 2 a〈pf Pf ,m1ν1,m2ν2 | jμ(2) | φd md P = 0〉

+a〈pfPf ,m1ν1,m2ν2 | jμ(1, 2) | φd md P = 0〉
+a〈pfPf ,m1ν1,m2ν2 | t (E)G0(E) jμ2N | φd md P = 0〉. (7)
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In this equation the final state is anti-symmetrized:

a〈pP,m1ν1,m2ν2 |≡ 1

2
(〈pP,m1ν1,m2ν2 | −〈−pP,m2ν2,m1ν1 |) , (8)

where in the first term on the right hand side of (8) particle 1 has a spin (isospin) ẑ projection m1 (ν1), particle
2 has a spin (isospin) ẑ projection m2 (ν2) and in the second term on the right hand side of (8) the particles
are exchanged. The j (1) ( j (2)) operator is a single nucleon current acting on the degrees of freedom of the
first (second) nucleon. The j (1, 2) operator accounts for processes where two nucleons are involved, t is the
2N transition operator and G0 is the free 2N propagator. The energy argument of the transition operator and

the propagator is E = (pf )2

m . Finally, the μ index denotes the component of the current operator. In particular
μ = 0 stands for charge density operators, while μ = 1, 2, 3 stand for spatial components. In the following
sections the way we calculate the individual parts of Mμ in Eq. (7) will be discussed separately for a specific
choice of the coordinate system and value of μ; we will drop μ for brevity.

3 Deuteron Bound State

The structure of the deuteron wave function can be written in the operator form, following [5–7]:

| φd md P = 0〉 =
∫

d3p | pP = 0〉

×
2∑

l=1

φl(|p|) [1isospin ⊗ bl(p)spin] [| 0 0〉 ⊗ χ(md)]

≡
∫

d3p | pP = 0〉
2∑

l=1

φl(|p|) [Bl(p)
]

[| 0 0〉 ⊗ χ(md)] , (9)

where

b1 = 1,

b2 =
(

σ (1) · pσ (2) · p − 1

3
p · p1

)
.

In Eq. (9) | χ(md)〉 is a state in which the spins of the two spin 1
2 particles are coupled to a total spin 1 with a

ẑ projection md . The isospins of the two nucleons are coupled to the total isospin 0 state | 0 0〉. φl are scalar
functions of the relative momentum and σ (1), σ (2) are doubled spin operators in the spin space of one nucleon
and identity operators in the spin space of the other nucleon, respectively:

σ (1) = (
σ x ⊗ 1, σ y ⊗ 1, σ z ⊗ 1

)
, (10)

σ (2) = (
1 ⊗ σ x , 1 ⊗ σ y, 1 ⊗ σ z) . (11)

Vector components in (10) and (11) are operators written in terms of the tensor product ⊗. They act in the
4-dimensional spin space of the two nucleon system and can be represented by 4×4 matrices—tensor products
of identity operators and Pauli matrices.

We make one step further and combine the isospin–spin states and isospin–spin operators (written inside
square brackets [. . . ]), implementing them in terms of 16-dimensional vectors and 16 × 16 matrices. In Sect.
7 we will give explicit examples of our numerical treatment.

Scalar functions φl in expansion (9) can be calculated using 3D formalism, see for example [7]. Nowadays
deuteron bound state calculations can use any 2N potentials given in the operator form and do not require
substantial computational resources.
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4 Single Nucleon Currents in Three Dimensions

Single nucleon (1N) currents act on the degrees of freedom of one particle. Their matrix elements in the
momentum space depend only on the initial and final momenta and are operators in the isospin–spin space.
For example the matrix element for the second nucleon, j (2), reads:[〈p′

1p′
2 | j (2) | p1p2〉

] = δ
(
p′

1 − p1
) [

j (2,p′
2 − p2,p′

2 + p2)
]

(12)

where in view of the standard nonrelativistic current, the dependence on the difference and sum of the initial
and final momenta is used. Implementing the transition from the individual particle momenta to the relative
momenta leads to

[〈p′P′ | j (2) | pP〉] = δ

(
1

2
P′ − 1

2
P + p′ − p

)

×
[

j (2,
1

2
P′ − 1

2
P − p′ + p,

1

2
P′ + 1

2
P − p′ − p)

]
. (13)

Again, the expressions inside the square brackets [. . . ] can be easily represented using the notion of the Kro-
necker product, as it will be seen in Sect. 7. The action of j (2) on the deuteron state at rest can be worked
out:

[〈p′P′ | j (2) | φd md P = 0〉] =
2∑

l=1

φl(|p′ + 1

2
P′|) [ j (2,P′,−2p′)

]

×
[

Bl(p′ + 1

2
P′)

]
[| 0 0〉 ⊗ χ(md)]

≡ [
O1N(2,p′,P′)

]
[| 0 0〉 ⊗ χ(md)] , (14)

where we used P = 0 and the normalization of momentum eigenstates (1), (2) so O1N is the resulting single
particle operator. Equation (14) gives the full isospin–spin state for the final p′, P′ momenta.

5 2N Currents in Three Dimensions

For a wide class of 2N current operators, their matrix elements in the momentum space (operators in isospin–
spin space) are given in the form:[〈p′

1p′
2 | j (1, 2) | p1p2〉

] = [
j (1, 2,p′

1 − p1,p′
2 − p2)

]
, (15)

see for example [8–10]. The right hand side of (15) is written as a linear combination of scalar functions and
products of spin space operators (O) and isospin space operators (T ):

[
j0(1, 2)

] =
5∑

i=1

8∑
j=1

f j S
i (p′

1 − p1,p′
2 − p2)

[
Ti O j S

]
, (16)

[j(1, 2)] =
5∑

i=1

24∑
j=1

f j
i (p

′
1 − p1,p′

2 − p2)
[
Ti O j

]
. (17)

In Ref. [11] even a general operator basis for the local 2N current operator was introduced. In Sect. 7 we
will show some examples of our dealing with isospin–spin operators (written inside square brackets [. . . ] in
Eqs. (16) and (17)).

Again, using (3), current matrix elements become:

[〈p′P′ | j (1, 2) | pP〉] =
[

j (1, 2,
1

2
P′ − 1

2
P + p′ − p,

1

2
P′ − 1

2
P − p′ + p)

]
. (18)

In the following we restrict ourselves to this class of momentum dependences. Our approach can, however,
be generalized to include any type of momentum dependence. The action of j (1, 2) on the deuteron state can
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be worked out using (1), (2), (3) and the assumption about the total momentum of the initial deuteron state
(P = 0). In the laboratory frame it yields:

[〈p′P′ | j (1, 2) | φd md P = 0〉]

=
∫

d3p′′
2∑

l=1

φl(|p′′|)
[

j (1, 2,
1

2
P′ + p′ − p′′, 1

2
P′ − p′ + p′′)

]

× [
Bl(p′′)

]
[| 0 0〉 ⊗ χ(md)]

≡ [
O2N(1, 2,p′,P′)

]
[| 0 0〉 ⊗ χ(md)] , (19)

where O2N is the resulting two-particle operator. Equation (19) gives the full isospin–spin state for the final
p′, P′ momenta.

6 t Operator in Three Dimensions

The t operator satisfies the Lippmann–Schwinger equation:

t (E) = V + t (E)G0(E)V (20)

or

t (E) = V + V G0(E)t (E), (21)

where G0(E) is the free propagator depending on the energy E and V is a 2N potential. It follows that, as
shown in [12], also t can be written as a linear combination of scalar functions (tγ,i ) and operators (Wγ,i ) in
the isospin–spin space:

[〈p′ | t (E) | p〉] =
∑
γ

6∑
i=1

tγ,i (|p′|, |p|, p̂′ · p̂, E)
[
Wγ,i (p′,p)

]
. (22)

Here

[
Wγ,i (p′,p)

] =
[
Cisospin
γ ⊗ wspin

i (p′,p)
]

are again operators in the isospin–spin space (matrix elements between momentum states), with wi (i =
1, 2, . . . , 6) acting in the 4-dimensional spin space of the 2N system. Decomposition (22) is not unique; our
choice of the six wi operators is consistent with [7]:

w1(p′,p) = 1, (23)

w2(p′,p) = σ (1) · σ (2), (24)

w3(p′,p) = i(σ (1)+ σ (2)) · (p × p′), (25)

w4(p′,p) = σ (1) · (p × p′)σ (2) · (p × p′), (26)

w5(p′,p) = σ (1) · (p′ + p)σ (2) · (p′ + p), (27)

w6(p′,p) = σ (1) · (p′ − p)σ (2) · (p′ − p). (28)

Scalar functions arising in the decomposition of t can be calculated in the 3D formalism. Calculations can be
performed for any type of the NN potential satisfying a similar expansion (22). For details see Ref. [7]. The
Cγ =| γ 〉〈γ | isospin operators project onto one of the four 2N isospin states:

| γ 〉 =|
(

1

2

1

2

)
t = 0, 1 mt = −t . . . t〉, (29)

where the | γ 〉 states are chosen in this way, because t conserves the total 2N isospin.
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The rescattering part of the matrix element M in (7) can be written as:
[〈p′P′ | t (E)G0(E)j2N | φd md P = 0〉]

=
∫

d3p
[〈p′ | t (E) | p〉] 1

E − p2

m + iε[
O(p,P′)

]
[| 0 0〉 ⊗ χ(md)]

= m

p̄∫

0

p2
[
f(|p|)] − p′2 [

f(|p′|)]
p′2 − p

d|p|

+m
p′ [f(|p′|)]

2

(
ln

(
p̄ + |p′|
p̄ − |p′|

)
− iπ

)

[| 0 0〉 ⊗ χ(md)] (30)

where O is either O1N from Eq. (14) or O2N from Eq. (19), E = p′2
m is the relative energy of the final 2N

state and

[
f(|p|)] =

2π∫

0

dφ

1∫

−1

dx
[〈p′ | t (E) | p〉] [

O(p,P′)
]
, (31)

since

p = |p|(
√

1 − x2 cosφ,
√

1 − x2 sin φ, x). (32)

The integral (30) with the cut-off value p̄ can be easily calculated numerically. In the next section we show
how to prepare its component

[
O(p,P′)

]
.

7 Explicit Representation of the Spin–Isospin Operators

Now that the form of expressions in (7) has been established, it remains to find a way to represent operators and
states in the isospin–spin space. Once an appropriate matrix representation is found, numerical calculations
can be constructed using Eqs. (14), (19) and (30) by simple substitutions and matrix multiplications.

Our choice for the 16-dimensional basis of the two nucleon isospin–spin state space (the deuteron in the
initial state, the proton and the neutron in the final state) is the set of vector states {| ei 〉} (i = 1, 2, . . . , 16):

| ei 〉 =
(
| misospin

1 (i)〉⊗ | misospin
2 (i)〉

)
⊗

(
| mspin

1 (i)〉⊗ | mspin
2 (i)〉

)
, (33)

where mspin(isospin)
j are the spin (isospin) projections of nucleon j and the corresponding quantum numbers

are given in Table 1.
Any operator or state in this space can be constructed using the notion of the Kronecker product (KP). The

Mathematica® [1] symbolic programming software contains definitions for the KP, which makes translating
expressions for isospin–spin operators a simple task. However, it is important to remember that the order of
operators in the KP must be preserved; Table 1 can serve as a reference to keep consistence with this paper. In
practice all the | ei 〉 states can be represented explicitly using the KP and the well known spinor forms:

∣∣∣1

2

1

2

〉
↔

(
1
0

)
,

∣∣∣1

2
− 1

2

〉
↔

(
0
1

)
.

In particular, the deuteron isospin–spin states appearing in Eq. (9) can be constructed using the Clebsch–Gordan
coefficients built in Mathematica ®. For example [| 0 0〉 ⊗ χ(1)] becomes:

(
0, 0, 0, 0,

1√
2
, 0, 0, 0,− 1√

2
, 0, 0, 0, 0, 0, 0, 0

)
(34)
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Table 1 Reference quantum numbers for our KP states

i misospin
1 (i) misospin

2 (i) mspin
1 (i) mspin

2 (i)

1 1
2

1
2

1
2

1
2

2 1
2

1
2

1
2 − 1

2

3 1
2 − 1

2
1
2

1
2

4 1
2 − 1

2
1
2 − 1

2

5 1
2

1
2 − 1

2
1
2

6 1
2

1
2 − 1

2 − 1
2

7 1
2 − 1

2 − 1
2

1
2

8 1
2 − 1

2 − 1
2 − 1

2

9 − 1
2

1
2

1
2

1
2

10 − 1
2

1
2

1
2 − 1

2

11 − 1
2 − 1

2
1
2

1
2

12 − 1
2 − 1

2
1
2 − 1

2

12 − 1
2

1
2 − 1

2
1
2

14 − 1
2

1
2 − 1

2 − 1
2

15 − 1
2 − 1

2 − 1
2

1
2

16 − 1
2 − 1

2 − 1
2 − 1

2 .

Similarly, any isospin or spin operator can be represented using the standard Pauli matrices:

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
. (35)

For example, the deuteron operators [B1(p)] and [B2(p)] with p = (
px , py, pz

)
from Eq. (9) have a form

simple enough to have their matrix representation written out in full. [B1] is simply a 16 × 16 identity matrix.
[B2] has a block diagonal form:

⎛
⎜⎝

B 0 0 0
0 B 0 0
0 0 B 0
0 0 0 B

⎞
⎟⎠ ,

where B is a 4 × 4 matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

1
3

(
−p2

x − p2
y − p2

z

)
+ p2

z pz
(

px − i py
)

pz
(

px − i py
) (

px − i py
) 2

pz
(

px + i py
) 1

3

(
−p2

x − p2
y − p2

z

)
− p2

z
(

px − i py
) (

px + i py
)

pz
(− (

px − i py
))

pz
(

px + i py
) (

px − i py
) (

px + i py
) 1

3

(
−p2

x − p2
y − p2

z

)
− p2

z pz
(− (

px − i py
))

(
px + i py

) 2 pz
(− (

px + i py
))

pz
(− (

px + i py
)) 1

3

(
−p2

x − p2
y − p2

z

)
+ p2

z

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We consider now in detail matrix representations of the different parts of the 2N current operator. It consists
of the single-nucleon and 2N operators. In this paper we assume that its single-nucleon part comprises the
standard nonrelativistic charge density (j0) as well as the convection (jconv) and spin (jspin) current operators.
The following expressions are matrix elements in the momentum space but operators in the isospin and spin
spaces for the single nucleon operators of nucleon 2:

〈p′
2 | j0(2) | p2〉 =

(
1

2
G p

E

(
1 + τ z(2)

) + 1

2
Gn

E

(
1 − τ z(2)

) )
, (36)
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〈p′
2 | jconv(2) | p2〉 =

(
1

2
G p

E

(
1 + τ z(2)

) + 1

2
Gn

E

(
1 − τ z(2)

) )

×p′
2 + p2

2m
, (37)

〈p′
2 | jspin(2) | p2〉 =

(
1

2
G p

M

(
1 + τ z(2)

) + 1

2
Gn

M

(
1 − τ z(2)

) )

× iσ (2)× (p′
2 − p2)

2m
. (38)

In the above expressions G p
E (Gn

E ) and G p
M (Gn

M ) are the proton (neutron) electric and magnetic form fac-
tors. The isospin projection operator, acting in the 2N isospin space, �E,M (2) ≡ 1

2 G p
E,M (1 + τ z(2)) +

1
2 Gn

E,M (1 − τ z(2)) , is represented by a diagonal 4 × 4 matrix:

�E,M (2) ↔

⎛
⎜⎜⎝

G p
E,M 0 0 0
0 Gn

E,M 0 0
0 0 G p

E,M 0
0 0 0 Gn

E,M

⎞
⎟⎟⎠ . (39)

The spin part of the charge density corresponds just to the unit 4 × 4 matrix and for every component of the
convection current we obtain a matrix proportional to the unit matrix. Only the spin part of the spin current
operator is not diagonal. The matrices corresponding to

[
j (2,P′,−2p′)

]
, from Eq. (14) for the charge density

(R(2)), spherical +1 component of the convection current ((C(2))+1) and spin current ((S(2))+1) are obtained
as

R(2) = �E (2)⊗
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ , (40)

(C(2))+1 = �E (2)⊗

⎛
⎜⎜⎜⎜⎜⎝

− px +i py√
2m

0 0 0

0 − px +i py√
2m

0 0

0 0 − px +i py√
2m

0

0 0 0 − px +i py√
2m

⎞
⎟⎟⎟⎟⎟⎠
, (41)

(S(2))+1 = �M (2)⊗

⎛
⎜⎜⎜⎝

0 − Q√
2m

0 0

0 0 0 0
0 0 0 − Q√

2m
0 0 0 0

⎞
⎟⎟⎟⎠ , (42)

where in the convection current p′
2+p2 has been replaced by −2p and in the spin current P′ = p′

2−p2 = Q ‖ ẑ.
In the 2N part of the current operator we consider for simplicity only the leading one-pion-exchange current

operator in the chiral effective field theory representation. The corresponding expression in the momentum
space reads:

〈p′
1 p′

2 | j1π (1, 2) | p1 p2〉 = i (τ (1)× τ (2) )z

×
((

gA

2Fπ

)2 σ (2) · q2

q2
2 + m2

π

σ (1) −
(

gA

2Fπ

)2 σ (1) · q1

q2
1 + m2

π

σ (2)

+
(

gA

2Fπ

)2 σ (1) · q1

q2
1 + m2

π

σ (2) · q2

q2
2 + m2

π

(q1 − q2 )

)
, (43)
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where q1 ≡ p′
i − pi , and mπ , Fπ and gA denote the pion mass, the pion decay constant and the nucleon axial

coupling constant, respectively. Its isospin part, �(1, 2) ≡ i (τ (1)× τ (2) )z , is again very simple

�(1, 2) ↔
⎛
⎜⎝

0 0 0 0
0 0 −2 0
0 2 0 0
0 0 0 0

⎞
⎟⎠ . (44)

The spin part of the one-pion-exchange current operator (J) has a more complicated form. We choose again
the spherical +1 component but are forced to show the individual matrix elements, Jkl :

J11 = q1zq2zv12(−q1x − iq1y + q2x + iq2y)√
2

,

J12 = −2q1zv1 − q1zv12(q2x − iq2y)(q1x + i(q1y + iq2x − q2y))√
2

,

J13 = q2z(2v2 − v12(q1x − iq1y)(q1x + i(q1y + iq2x − q2y)))√
2

,

J14 = 2v2(q2x − iq2y)− (q1x − iq1y)(2v1 + v12(q2x − iq2y)(q1x + i(q1y + iq2x − q2y)))√
2

,

J21 = q1zv12(q2x + iq2y)(−q1x − iq1y + q2x + iq2y)√
2

,

J22 = q1zq2zv12(q1x + i(q1y + iq2x − q2y))√
2

,

J23 = (q2x + iq2y)(2v2 − v12(q1x − iq1y)(q1x + i(q1y + iq2x − q2y)))√
2

,

J24 = −2q2zv2 + q2zv12(q1x − iq1y)(q1x + i(q1y + iq2x − q2y))√
2

,

J31 = −q2zv12(q1x + iq1y)(q1x + i(q1y + iq2x − q2y))√
2

,

J32 = − (q1x + iq1y)(2v1 + v12(q2x − iq2y)(q1x + i(q1y + iq2x − q2y)))√
2

,

J33 = q1zq2zv12(q1x + i(q1y + iq2x − q2y))√
2

,

J34 = 2q1zv1 + q1zv12(q2x − iq2y)(q1x + i(q1y + iq2x − q2y))√
2

,

J41 = −v12(q1x + iq1y)(q2x + iq2y)(q1x + i(q1y + iq2x − q2y))√
2

,

J42 = q2zv12(q1x + iq1y)(q1x + i(q1y + iq2x − q2y))√
2

,

J43 = q1zv12(q2x + iq2y)(q1x + i(q1y + iq2x − q2y))√
2

,

J44 = q1zq2zv12(−q1x − iq1y + q2x + iq2y)√
2

, (45)

where

vi = g2
A

(2Fπ)2
(
q2

i + m2
π

) (46)

and

v12 = g2
A

(2Fπ)2
(
q2

1 + m2
π

) (
q2

2 + m2
π

) . (47)
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Fig. 1
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p′

1 − p1 = (
q1x , q1y, q1z

)
, p′

2 − p2 = (
q2x , q2y, q2z

))
with T2 = τ z(1)− τ z(2) and O5 = (q1 × σ (1))+ (q2 ×

σ (2)). τ (i) (σ (i)) is the 2N isospin (spin) vector operator acting in the space of nucleon i
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Fig. 2 The φ1(p) (left) and φ2(p) (right) expansion function in the operator form of the deuteron as a function of the magnitude
of the relative momentum p for the considered chiral NNLO potential
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Fig. 3 The s-wave (left) and d-wave (right) component of the deuteron wave function as a function of the magnitude of the
relative momentum p for the considered chiral NNLO potential. Crosses represent results obtained using the operator approach
and solid lines are directly from the standard partial wave decomposition

In the laboratory frame the matrix (J1π (1, 2))+1 corresponding to
[

j (1, 2,
1

2
P′ + p′ − p′′, 1

2
P′ − p′ + p′′)

]

reads

(J1π )+1 = �(1, 2)⊗ J, (48)

where now q1 = 1
2 P′ + p′ − p′′ and q2 = 1

2 P′ − p′ + p′′.
Matrices corresponding to the isospin–spin operators appearing in (16) and (17) can be constructed in the

same way. An explicit example of such 16 × 16 matrix is given below in Fig. 1.



Deuteron Disintegration in Three Dimensions 2243

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0  1  2  3  4

 R
e(

<
 p

f  | 
t(

pf ) 
| p

 >
) 

[fm
2
]

 p [fm-1]

-0.0002
-0.00015
-0.0001
-5e-05

 0
 5e-05

 0.0001
 0.00015
 0.0002

 0.00025
 0.0003

 0.00035

 0  1  2  3  4

 Im
(<

 p
f  | 

t(
pf ) 

| p
 >

) 
[fm

2
]

 p [fm-1]
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1.9 fm−1. Points represent predictions obtained by a projection from the 3D results. Solid lines represent direct solutions of LSE
in the standard partial wave decomposition
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Fig. 5 The same as in Fig. 4 for the half-shell 3 P0 t-matrix
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Fig. 6 The same as in Fig. 4 for the half-shell 1 P1 t-matrix

8 Results

In the following we will present results obtained using a chiral NNLO potential [13] withΛ = 550 MeV/c and
Λ̃ = 600 MeV/c. The operator form of such a potential was briefly described in Appendix C of Ref. [7], where
also an example set of necessary parameters was given for its neutron-proton version. The same parameters
will also be used in the present paper.

There are three basic ingredients in our calculations: the deuteron wave function, the 2N t-matrix and the
2N current operator. Before we show selected observables for the 2H(e, e′ p)n reaction, we will describe our
numerical performance and the way we verify the quality of our calculations.

As described in Ref. [7] and Eq. (9), the deuteron in the operator form is represented by two functions φ1(p)
and φ2(p). The corresponding Schrödinger equation for φ1(p) and φ2(p) can be rewritten as an eigenvalue
problem, which is of the same type and dimension as the one solved for the deuteron wave function in the
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Fig. 7 The same as in Fig. 4 for the half-shell 3S1 −3 D1 t-matrix. Rows show different l and l ′ cases (from top to bottom): (l = 0,
l ′ = 0), (l = 2, l ′ = 0), (l = 0, l ′ = 2) and (l = 2, l ′ = 2)

standard partial wave representation, where one deals with the s- and d-components, ψ0(p) and ψ2(p). The
connection between the solutions is very simple [6]

ψ0(p) = √
4π φ1(p), ψ2(p) = 4

√
2p2

3
φ2(p) (49)

and can be used to check the numerical performance.
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Table 2 The six electron kinematics considered in the paper for the exclusive 2H(e, e′ p)n process

Ee θe E ′
e pf of Eq. (6) ω = Ee − E ′

e Q of Eq. (4)
MeV deg MeV MeV/c MeV MeV/c

K 1 500 6.9 490.3 78.1 9.7 60
K 2 500 17.4 485.3 78.1 14.7 150
K 3 500 6.1 467.0 158.7 30.0 60
K 4 500 36.4 447.0 158.7 53.0 300
K 5 500 16.3 337.1 375.3 162.9 200
K 6 500 73.7 281.2 375.3 218.8 500
The initial electron energy (Ee), the electron scattering angle (θe), the final electron energy (E ′

e), the final relative nucleon–nucleon
momentum (|pf |), the energy transfer (ω), and the magnitude of the three-momentum transfer (Q) are given

pp

φp =180o
Θ  > 0p

Θ  < 0ppp

φp =0
o

Θe

Q
k’

z

x

k

Fig. 8 The kinematics for the exclusive 2H(e, e′ p)n process. k (k′) is the initial (final) electron momentum. We neglect the
electron mass, so | k |= E and | k′ |= E ′

In Fig. 2 we show directly the φ1(p) and φ2(p) functions required for the operator expansion of the
deuteron. In Fig. 3 the resulting s- and d-wave components in momentum space are compared to the results
obtained by firstly decomposing the NN potential into partial waves and then solving the resulting Schrödinger
equation in its standard form. The agreement for the two wave function components is perfect for all their
significant values.

In Ref. [7] we solved the Lippmann–Schwinger equation (LSE) for the 2N t-matrix directly in three dimen-
sions. At that time we focused mainly on the on-shell behavior of the expansion coefficients ti (p′, p, x; E2N ),

that is we were interested in ti (p0, p0, x; E2N = p2
0

m ), which are sufficient to calculate the Wolfenstein param-
eters and the nucleon–nucleon scattering observables. Furthermore, we solved LSE in such a form (Eq. 2.6
from Ref. [7])

∑
j

Ak j (p′,p)t tmt
j (p′,p) =

∑
j

Ak j (p′,p)vtmt
j (p′,p)

+
∫

d3 p′′ ∑
j j ′
v

tmt
j (p′,p′′)G0(p

′′)t tmt
j ′ (p

′′,p)Bkj j ′(p
′,p′′,p), (50)

that the magnitude of the initial p momentum could be fixed.
Clearly, for the 2H(e, e′ p)n reaction we need a “left” version of Eq. (50), which allows us to find the

half-shell t-matrix for a fixed final relative momentum, pf , given now by the reaction kinematics. The starting
point for this new version is equation (20). Repeating the algebra outlined in Ref. [7], we prepared a numerical

realization of this “left” version of LSE, leading to the scalar expansion coefficients ti (pf ,p; E2N = (pf )2

m ) ≡
ti (pf , p, x; E2N = (pf )2

m ), where x ≡ p̂f · p̂. Our numerical scheme was based on the standard LU decompo-
sition from Numerical Recipes [14]. We used (complex versions of) the LUDCMP and LUBKSB subroutines
to solve the system of linear equations. In order to achieve a unique and smooth solution also for p = pf , it
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Fig. 9 The unpolarized cross section d5σ/(d Ee′ d�e′ d�p ) and the spin-dependent helicity asymmetry A‖ as a function of the
proton scattering angle θp for the K 3 electron kinematics from Table 2. Convergence of the full results calculated with a different
number of nucleon–nucleon partial waves towards the full 3D prediction (solid line) is shown. Partial wave based results with
j ≤ 1 (dash-dotted line), j ≤ 2 (dotted line) and j ≤ 4 (dashed line) are displayed

was sufficient to calculate the average

ti

(
pf , p, x; E2N = (pf)2

m

)

= 1

2

(
ti

(
pf − δpf , p, x; E2N = (pf)2

m

)
+ ti

(
pf + δpf , p, x; E2N = (pf)2

m

))
, (51)

with δpf ≈ 0.01 fm−1.
Actually, this effort turned out to be unnecessary and provided merely an additional check of numerics,

since

ti

(
pf , p, x; E2N = (pf)2

m

)
= ti

(
p, pf , x; E2N = (pf)2

m

)
(52)

for the most general rotational, parity and time reversal invariant form of the NN force. That means that the
left coefficients,

ti

(
pf , p, x; E2N = (pf)2

m

)
,

can be obtained directly from the “right” version of LSE.
In order to further check our t-matrix coefficients, we used them to calculate the partial wave representation

of the t-matrix:

〈pf(l ′s) j | t

(
E2N = (pf)2

m

)
| p(ls) j〉,
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Fig. 10 The same as in Fig. 9 for the deuteron analyzing powers iT11 and T20
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Fig. 11 The same as in Fig. 9 for the deuteron analyzing powers T21 and T22
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Fig. 12 The same as in Fig. 9 for the K 6 electron kinematics from Table 2. Partial wave based results with j ≤ 4 (dash-dotted
line), j ≤ 7 (dotted line) and j ≤ 9 (dashed line) are compared with the full 3D prediction (solid line)
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Fig. 13 The same as in Fig. 12 for the deuteron analyzing powers iT11 and T20



Deuteron Disintegration in Three Dimensions 2249

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-180 -135 -90 -45  0  45  90  135  180
 T

21

Θp  [deg] 

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-180 -135 -90 -45  0  45  90  135  180

 T
22

Θp  [deg] 

Fig. 14 The same as in Fig. 12 for the deuteron analyzing powers T21 and T22

where l (l ′) is the initial (final) angular momentum of the 2N system, s is the 2N (conserved) spin and j is
the total (conserved) 2N angular momentum. These matrix elements can be compared with direct solutions
of LSE obtained in the standard partial wave representation. We performed the projection of the 3D t-matrix
on partial waves, employing the simple method proposed in Ref. [15] for NN forces. In Figs. 4, 5, 6 and 7
we show examples for the uncoupled and coupled channels, with the 2N isospin t = 0 and t = 1. We chose
pf ≈ 1.9 fm−1, which corresponds to a relatively high NN center of mass energy, E2N = 150 MeV. For such
an energy many partial waves contribute to the NN scattering observables and the question arises if the partial
contributions are consistent with the full 3D calculations. From Figs. 4, 5, 6 and 7, where we show t-matrices
for a few dominant 2N partial waves (and many other cases which are not shown here) we infer that this is
really the case. The agreement between results based on the two quite different approaches is very good. In
both cases we used 40 Gaussian p points distributed in the (0, p̄ = 6 fm−1) interval. For the intermediate
angular integrations in the 3D calculations we took 50 x and 50 φ points.

The final ingredient in our framework is the 2N current operator. It consists of the single-nucleon and
2N operators. For the purpose of this paper we assume that its single-nucleon part comprises the standard
nonrelativistic charge density as well as the convection and spin current operators. In the 2N part we take for
simplicity only the leading one-pion-exchange current operator in the chiral effective field theory representa-
tion. In our 3D treatment of the 2H(e, e′ p)n reaction, we calculate the spin and isospin matrix elements of the
current operator directly, using simple matrix representations of the spin and isospin operators and the concept
of the Kronecker product to deal with the 2N spin and isospin spaces, as discussed in Sect. 7. In the traditional
calculations, a partial wave decomposition of the current operator is required. It is a rather easy task for the
single-nucleon part of the current operator. For the one-pion-exchange current operator it is known analytically
(see for instance Ref. [16]). It can also be obtained using the method proposed in Refs. [17,18], where even
more complicated two-pion-exchange current operators were considered.

To give examples of our results on deuteron electro disintegration we chose several electron kinematics
given in Table 2. They allowed us to study the reaction for three different internal nucleon–nucleon energies
(corresponding to the three values of pf ) and for five values of the three-momentum transfer Q. The first
parameter is the input for the t-matrix calculations and the second one specifies the properties of the current
matrix elements.
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Fig. 15 The unpolarized cross section d5σ/(d Ee′ d�e′ d�p ) and the spin-dependent helicity asymmetry A‖ as a function of
the proton scattering angle θp for the K 6 electron kinematics from Table 2. The single-nucleon current contribution to the plane
wave part of the nuclear matrix element is now calculated without partial wave decomposition. The remaining parts of the nuclear
matrix element are still calculated using partial waves. Results obtained with j ≤ 1 (dash-dotted line), j ≤ 2 (dotted line) and
j ≤ 3 (dashed line) are compared with the full 3D prediction (solid line)

In addition to the information given in Table 2 we need to label the exclusive kinematics. For the fixed
“electron arm”, we deal in fact with a two-body kinematics in the final proton–neutron system. We assume that
protons are ejected in the electron plane, where θp would be the angle between the three-momentum transfer
Q and the final proton momentum pp. Since we have to distinguish between the φp = 0 ◦ and φp = 180 ◦
cases, we ascribe the negative sign to θp for φp = 0 ◦. This is shown in Fig. 8. Note that the six electron
kinematics provide a unique solution for any θp value and that θp changes from 0 to 180 ◦.

We are now ready to show our results for several selected observables. We chose first of all the unpolarized
cross section, d5σ/(d Ee′ d�e′ d�p ). We take also into account one example of the spin-dependent helicity
asymmetry,

A‖ ≡ σ(h = +1, Jd)− σ(h = −1, Jd)

σ (h = +1, Jd)+ σ(h = −1, Jd)
,

where h is the initial electron helicity and the projection of the initial deuteron total angular momentum (Jd )
on Q, Jdz , is equal 1. In addition we show our predictions for the deuteron tensor analyzing powers Tkq . Note
that they are calculated in the system, where Q ‖ ẑ.

Our primary goal was to compare results based on the partial wave decomposition for the t-matrix and the
nuclear current operator with new predictions resulting from the 3D scheme. We observed a perfect agreement
for all the electron kinematics and for all the considered observables, if a sufficient number of partial waves
in the first type of calculations is included. The six kinematics can be divided into two groups: (K 1, K 3,
K 5) and (K 2, K 4, K 6). In each group a similar type of convergence of the observables with respect to the
number of partial waves is observed. That is why in Figs. 9, 10, 11, 12, 13 and 14 we show predictions for
two representative (K 3 and K 6) kinematics only. In the first case we see a rapid convergence and partial wave
based results with j ≤ 4 are already very close to the full 3D prediction. In the second case all partial waves
with j ≤ 9 are necessary to achieve convergence.
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Fig. 16 The same as in Fig. 15 for the deuteron analyzing powers iT11 and T20
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Fig. 17 The same as in Fig. 15 for the deuteron analyzing powers T21 and T22
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It is interesting to see that slow convergence for the K 2, K 4 and K 6 kinematics does not result from
the higher pf values (that is from the t-matrix) but is related to the Q values and thus to the partial wave
decomposition of the current operator. It is well known (see for example Ref. [17]) that especially partial wave
decomposition of the single nucleon current requires many partial waves. However, even if the initial bound
state is given in the partial wave representation, the single nucleon current can be applied directly in the case
of the plane wave amplitudes. This holds not only for the two- but also for the three-nucleon system [19].
In order to demonstrate this behavior, we showed in Figs. 15, 16 and 17 observables for the K 6 kinematics.
In this case the single-nucleon current contribution to the plane wave amplitude is calculated without partial
wave decomposition. We see clearly that the convergence is significantly improved, even if the 2N current
contribution to the plane wave part of the nuclear matrix element and the whole rescattering part of the nuclear
matrix element is calculated with the partial wave decomposition.

9 Conclusions and Outlook

The presented method to treat several electroweak processes involving 1N and 2N current operators in three
dimensions can successfully replace standard partial wave treatment. We showed, for the case of electron
induced deuteron disintegration, that results obtained using the new approach agree very well with those
obtained using PWD. For all observables considered in this paper, the traditional results converge to the 3D
predictions when the number of partial waves is sufficiently high (Figs. 9, 10, 11, 12, 13, 14).

Our formalism employs the two nucleon bound state, the 2N t matrix and the current operators in the
joined isospin–spin space of the 2N system using 3D formalism in the 2N momentum space. Each element of
this framework has been separately tested and compared with the standard PWD approach. Our method seems
to be more flexible and can deal with the rich structures of the 2N force and the current operator, especially
derived within the higher orders of the chiral effective field theory [11,13,20]. We plan to use our framework
for other processes such as muon capture or neutrino induced deuteron disintegration. In [2, references therein]
muon capture on 2H and 3He was considered with the use of the PWD approach. It would be interesting to
compare those results with 3D calculations. A similar convergence to 3D results as in Figs. 9, 10, 11, 12, 13
and 14 is expected.
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