24 research outputs found

    Hetero-Bis-Conjugation of Bioactive Molecules to Half-Sandwich Ruthenium(II) and Iridium(III) Complexes Provides Synergic Effects in Cancer Cell Cytotoxicity

    Get PDF
    Four bipyridine-Type ligands variably derivatized with two bioactive groups (taken from ethacrynic acid, flurbiprofen, biotin, and benzylpenicillin) were prepared via sequential esterification steps from commercial 2,2â€Č-bipyridine-4,4â€Č-dicarboxylic acid and subsequently coordinated to ruthenium(II) p-cymene and iridium(III) pentamethylcyclopentadienyl scaffolds. The resulting complexes were isolated as nitrate salts in high yields and fully characterized by analytical and spectroscopic methods. NMR and MS studies in aqueous solution and in cell culture medium highlighted a substantial stability of ligand coordination and a slow release of the bioactive fragments in the latter case. The complexes were assessed for their antiproliferative activity on four cancer cell lines, showing cytotoxicity to the low micromolar level (equipotent with cisplatin). Additional biological experiments revealed a multimodal mechanism of action of the investigated compounds, involving DNA metalation and enzyme inhibition. Synergic effects provided by specific combinations of metal and bioactive fragments were identified, pointing toward an optimal ethacrynic acid/flurbiprofen combination for both Ru(II) and Ir(III) complexes

    Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes

    Get PDF
    Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl 2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η 6-bip)Os(4-CO 2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η 6-p-cym)RuCl(dap)] + (p-cym = p-cymene) (5), and [(η 6-p-cym)RuCl(imidazole-CO 2H)(PPh 3)] + (6), were synthesized by using a solid-phase approach. Conjugates 3-5 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC 50 = 63 ± 2 Ό in MCF-7 cells and IC 50 = 26 ± 3 Ό in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC 50 = 45 ± 2.6 Ό in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically. © 2012 American Chemical Society

    Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs

    Get PDF
    This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy

    Triplex metallohelices have enantiomer-dependent mechanisms of action in colon cancer cells

    Get PDF
    Self-assembled enantiomers of an asymmetric di-iron metallohelix differ in their antiproliferative activities against HCT116 colon cancer cells such that the compound with Λ-helicity at the metals becomes more potent than the Δ compound with increasing exposure time. From concentration- and temperature-dependent 57Fe isotopic labelling studies of cellular accumulation we postulate that while the more potent Λ enantiomer undergoes carrier-mediated efflux, for Δ the process is principally equilibrative. Cell fractionation studies demonstrate that both enantiomers localise in a similar fashion; compound is observed mostly within the cytoskeleton and/or genomic DNA, with significant amounts also found in the nucleus and membrane, but with negligible concentration in the cytosol. Cell cycle analyses using flow cytometry reveal that the Δ enantiomer induces mild arrest in the G1 phase, while Λ causes a very large dose-dependent increase in the G2/M population at a concentration significantly below the relevant IC50. Correspondingly, G2-M checkpoint failure as a result of Λ-metallohelix binding to DNA is shown to be feasible by linear dichroism studies, which indicate, in contrast to the Δ compound, a quite specific mode of binding, probably in the major groove. Further, spindle assembly checkpoint (SAC) failure, which could also be responsible for the observed G2/M arrest, is established as a feasible mechanism for the Λ helix via drug combination (synergy) studies and the discovery of tubulin and actin inhibition. Here, while the Λ compound stabilizes F-actin and induces a distinct change in tubulin architecture of HCT116 cells, Δ promotes depolymerization and more subtle changes in microtubule and actin networks

    Functionalization of osmium arene anticancer complexes with (poly)arginine : effect on cellular uptake, internalization, and cytotoxicity

    Get PDF
    Attaching peptides to metallodrugs may result in improved biological properties of the complexes. The potential use of cell penetrating peptides (CPPs) as cell delivery vectors is attractive, since directed cell uptake of (metallo)drugs remains a major challenge in anticancer drug design. In this work, we report the synthesis of peptide conjugates of the organometallic OsII anticancer complex [(η6-biphenyl)Os(picolinate)Cl] with different arginine (Arg) chain lengths. Complexes conjugated to Arg5 or Arg8 at the 5-position of the picoline ring increase Os uptake into A2780 human ovarian cancer cells by ca. 2× and 10×, respectively, whereas a single Arg had no effect. Furthermore, a 15-fold increase in binding of Os to DNA, a potential target for these complexes, was observed for Arg8 compared to the Arg1 conjugate. The Arg5 and Arg8 conjugates exhibited fast kinetics of binding to calf thymus DNA and an ability to precipitate DNA at very low concentrations. In serum-free medium, the Arg8 complex was cytotoxic (IC50 33 ÎŒM) and appears to be a rare example of a bioactive organometallic peptide conjugate. Experiments on CHO cells deficient in DNA repair suggested that unrepaired DNA damage contributes to the cytotoxicity of the Arg5 and Arg8 conjugates. These studies demonstrate the potential for use of cell- and nucleus-penetrating peptides in targeting organometallic arene anticancer complexes

    The mechanism of antiproliferative activity of the oxaliplatin pyrophosphate derivative involves its binding to nuclear DNA in cancer cells

    No full text
    (1R,2R-diaminocyclohexane)(dihydropyrophosphato) platinum(II), also abbreviated as RRD2, belongs to a class of potent antitumor platinum cytostatics called phosphaplatins. Curiously, several published studies have suggested significant mechanistic differences between phosphaplatins and conventional platinum antitumor drugs. Controversial findings have been published regarding the role of RRD2 binding to DNA in the mechanism of its antiproliferative activity in cancer cells. This prompted us to perform detailed studies to confirm or rule out the role of RRD2 binding to DNA in its antiproliferative effect in cancer cells. Here, we show that RRD2 exhibits excellent antiproliferative activity in various cancer cell lines, with IC50 values in the low micromolar or submicromolar range. Moreover, the results of this study demonstrate that DNA lesions caused by RRD2 contribute to killing cancer cells treated with this phosphaplatin derivative. Additionally, our data indicate that RRD2 accumulates in cancer cells but to a lesser extent than cisplatin. On the other hand, the efficiency of cisplatin and RRD2, after they accumulate in cancer cells, in binding to nuclear DNA is similar. Our results also show that RRD2 in the medium, in which the cells were cultured before RRD2 accumulated inside the cells, remained intact. This result is consistent with the view that RRD2 is activated by releasing free pyrophosphate only in the environment of cancer cells, thereby allowing RRD2 to bind to nuclear DNA. Graphical abstract: [Figure not available: see fulltext.]

    Are Pt(IV) Prodrugs That Release Combretastatin A4 True Multi-action Prodrugs?

    No full text
    "Multi-action"Pt(IV) derivatives of cisplatin with combretastatin A4 (CA4) bioactive ligands that are conjugated to Pt(IV) by carbonate are unique because the ligand (IC50 < 10 nM) is dramatically 1000-folds more cytotoxic than cisplatin in vitro. The Pt(IV)-CA4 prodrugs were as cytotoxic as CA4 itself, indicating that the platinum moiety probably plays an insignificant role in triggering cytotoxicity, suggesting that the Pt(IV)-CA4 complexes act as prodrugs for CA4 rather than as true multi-action prodrugs. In vivo tests (Lewis lung carcinoma) show that ctc-[Pt(NH3)2(PhB)(CA4)Cl2] inhibited tumor growth by 93% compared to CA4 (67%), cisplatin (84%), and 1:1:1 cisplatin/CA4/PhB (85%) while displaying <5% body weight loss compared to cisplatin (20%) or CA4 (10%). In this case, and perhaps with other extremely potent bioactive ligands, platinum(IV) acts merely as a self-immolative carrier triggered by reduction in the cancer cell with only a minor contribution to cytotoxicity

    Pt(II) complex containing the 1R,2R enantiomer of trans-1,2-diamino-4-cyclohexene ligand effectively and selectively inhibits the viability of aggressive pancreatic adenocarcinoma cells and alters their lipid metabolism

    No full text
    Here, we investigated the mechanism of antiproliferative action in cancer cells of new compounds structurally derived from oxaliplatin, namely a pair of enantiomers [Pt(OXA)(1R,2R-DACHEX)] (1) and [Pt(OXA)(1S,2S-DACHEX)] (2) (OXA = oxalate, DACHEX = trans-1,2-diamino-4-cyclohexene). While oxaliplatin is used almost exclusively to treat colorectal and other gastrointestinal cancers, new complex 1 shows instead high potency in malignant pancreatic adenocarcinoma PSN1 cells including superior selectivity for pancreatic cancer over noncancerous cells. Utilizing a multi-platform biochemical approach to study the unique features of the mechanism of action of this new platinum-based drug, we show that 1 has a much greater ability to penetrate pancreatic tumors than its S,S enantiomer 2 and oxaliplatin, and to be transported into cells as bound to plasma proteins. Additionally, the mechanism of action of 1 and, to a lesser extent, oxaliplatin in pancreatic cancer cells involves alterations of the lipogenesis pathway, namely inhibition of de novo lipid synthesis, acting by a new mechanism not yet considered for anticancer action of clinically used antitumor platinum drugs. These data highlight the functional diversity of platinum anticancer compounds and the potential benefits of finding new anticancer drugs applying a mechanism-based rationale

    Organometallic half-sandwich iridium anticancer complexes

    Get PDF
    The low-spin 5d6 IrIII organometallic half-sandwich complexes [(η5-Cpx)Ir(XY)Cl]0/+, Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph), or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph), XY = 1,10-phenanthroline (4−6), 2,2â€Č-bipyridine (7−9), ethylenediamine (10 and 11), or picolinate (12−14), hydrolyze rapidly. Complexes with N,N-chelating ligands readily form adducts with 9-ethylguanine but not 9-ethyladenine; picolinate complexes bind to both purines. Cytotoxic potency toward A2780 human ovarian cancer cells increases with phenyl substitution on Cp*: Cpxbiph > Cpxph > Cp*; Cpxbiph complexes 6 and 9 have submicromolar activity. Guanine residues are preferential binding sites for 4−6 on plasmid DNA. Hydrophobicity (log P), cell and nucleus accumulation of Ir correlate with cytotoxicity, 6 > 5 > 4; they distribute similarly within cells. The ability to displace DNA intercalator ethidium bromide from DNA correlates with cytotoxicity and viscosity of Ir−DNA adducts. The hydrophobicity and intercalative ability of Cpxph and Cpxbiph make a major contribution to the anticancer potency of their IrIII complexes
    corecore