1,329 research outputs found

    Immittance Matching for Multi-dimensional Open-system Photonic Crystals

    Full text link
    An electromagnetic (EM) Bloch wave propagating in a photonic crystal (PC) is characterized by the immittance (impedance and admittance) of the wave. The immittance is used to investigate transmission and reflection at a surface or an interface of the PC. In particular, the general properties of immittance are useful for clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch waves on a plane in infinite one- and two-dimensional (2D) PCs is real when the plane is a reflection plane of the PC and the Bloch wavevector is perpendicular to the plane. We also show that the pure-real feature of immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the numerical calculations. The analytical proof indicates that the method used for immittance matching is extremely simplified since only the real part of the immittance function is needed for analysis without numerical verification. As an application of the proof, we describe a method based on immittance matching for qualitatively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite slab waveguide (WG) and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite channel WG and a semi-infinite 2D PC slab line-defect WG.Comment: 8 pages, 6 figure

    Assessment of Circulating MicroRNAs for the Diagnosis and Disease Activity Evaluation in Patients with Ulcerative Colitis by Using the Nanostring Technology

    Get PDF
    Background: Clinical decision and patient care management in inflammatory bowel diseases is largely based on the assessment of clinical symptoms, while the biomarkers currently in use poorly reflect the actual disease activity. Therefore, the identification of novel biomarkers will serve an unmet clinical need for IBD screening and patient management. We examined the utility of circulating microRNAs for diagnosis and disease activity monitoring in ulcerative colitis (UC) patients. Methods: Blood serum microRNAs were isolated from UC patients with active and inactive disease and healthy donors. High-throughput microRNA profiling was performed using the Nanostring technology platform. Clinical disease activity was captured by calculating the partial Mayo score. C-reactive protein (CRP) was measured in UC patients as part of their clinical monitoring. The profiles of circulating microRNAs and CRP were correlated with clinical disease indices. Results: We have identified a signature of 12 circulating microRNAs that differentiate UC patients from control subjects. Moreover, six of these microRNAs significantly correlated with UC disease activity. Importantly, a set of four microRNAs (hsa-miR-4454, hsa-miR-223-3p, hsa-miR-23a-3p, and hsa-miR-320e) which correlated with UC disease activity, were found to have higher sensitivity and specificity values than CRP. Conclusions: Circulating microRNAs provide a novel diagnostic and prognostic marker for UC patients. The use of an FDA approved platform could accelerate the application of microRNA screening in a GI clinical setting. When used in combination with current diagnostic and disease activity assessment modalities, microRNAs could improve both IBD screening and care management

    Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients

    Full text link
    We analyze the reflection and transmission coefficients calculated from transfer matrix simulations on finite lenghts of electromagnetic metamaterials, to determine the effective permittivity and permeability. We perform this analysis on structures composed of periodic arrangements of wires, split ring resonators (SRRs) and both wires and SRRs. We find the recovered frequency-dependent permittivity and permeability are entirely consistent with analytic expressions predicted by effective medium arguments. Of particular relevance are that a wire medium exhibits a frequency region in which the real part of permittivity is negative, and SRRs produce a frequency region in which the real part of permeability is negative. In the combination structure, at frequencies where both the recovered real part of permittivity and permeability are simultaneously negative, the real part of the index-of-refraction is found also to be unambigously negative.Comment: *.pdf file, 5 figure

    Detection by NMR of a "local spin-gap" in quenched CsC60

    Full text link
    We present a 13C and 133Cs NMR investigation of the CsC60 cubic quenched phase. Previous ESR measurements suggest that this phase is metallic, but NMR reveals contrasting electronic behavior on the local scale. The 13C spin-lattice relaxation time (T1) exhibits a typical metallic behavior down to 50 K, but indicates that a partial spin-gap opens for T<50 K. Unexpectedly, 133Cs NMR shows that there are two inequivalent Cs sites. For one of these sites, the NMR shift and (T1T)^{-1} follow an activated law, confirming the existence of a spin-gap. We ascribe this spin-gap to the occurrence of localized spin-singlets on a small fraction of the C60 molecules.Comment: 4 figure

    Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer?

    Get PDF
    Subsets of patients with non-small cell lung cancer respond remarkably well to small molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptor (EGFR) such as gefitinib or erlotinib. In 2004, it was found that EGFR mutations occurring in the kinase domain are strongly associated with EGFR-TKI sensitivity. However, subsequent studies revealed that this relationship was not perfect and various predictive markers have been reported. These include EGFR gene copy numbers, status of ligands for EGFR, changes in other HER family genes or molecules downstream to EGFR including KRAS or AKT. In this review, we would like to review current knowledge of predictive factors for EGFR-TKI. As all but one phase III trials failed to show a survival advantage of the treatment arm involving EGFR-TKIs, it is necessary to select patients by these biomarkers in future clinical trials. Through these efforts, it would be possible to individualise EGFR-TKI treatment for patients suffering from lung cancer

    A new satellite RNA is associated with natural infections of cucumber mosaic virus in succulent snap bean

    Get PDF
    Cucumber mosaic virus (CMV) was consistently recovered from symptomatic snap bean plants during surveys conducted in 2007 and 2008 in central Wisconsin. A large proportion of these CMV-infected plants contained a single-stranded linear RNA molecule consisting of 339 nucleotides and sharing 90–94% sequence identity with other satellite (sat) RNAs of CMV. Comparison of this satRNA sequence with currently available CMV satRNA sequences suggests this to be a novel satRNA

    Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context

    Get PDF
    Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been progressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together dendroclimatologists to identify a collective strategy for improving large-scale summer temperature reconstructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical calibration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (∼900–1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially

    Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition

    Get PDF
    The mature epidermal growth factor receptor (EGFR) neither associates with nor requires the molecular chaperone heat-shock protein 90 (Hsp90). Mutations in EGFR exons 18, 19, and 21 confer Hsp90 chaperone dependence. In non-small cell lung cancer (NSCLC), these mutations are associated with enhanced sensitivity to EGFR inhibitors in vitro and with clinical response in vivo. Although less prevalent, insertions in EGFR exon 20 have also been described in NSCLC. These mutations, however, confer resistance to EGFR inhibitors. In NSCLC, exon 20 insertions have also been identified in the EGFR family member ErbB2. Here, we examined the sensitivity of exon 20 insertion mutants to an Hsp90 inhibitor currently in the clinic. Our data demonstrate that both EGFR and ErbB2 exon 20 insertion mutants retain dependence on Hsp90 for stability and downstream-signalling capability, and remain highly sensitive to Hsp90 inhibition. Use of Hsp90 inhibitors should be considered in NSCLC harbouring exon 20 insertions in either EGFR or ErbB2

    Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus

    Get PDF
    Global mean surface warming has stalled since the end of the twentieth century1, 2, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean3, 4, 5, 6, 7, 8, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing from the atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing9. Here, we analyse observations along with simulations from a global ocean–sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700 m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability
    corecore