49 research outputs found

    Review of experimental studies of secondary ice production

    Get PDF
    Secondary ice production (SIP) plays a key role in the formation of ice particles in tropospheric clouds. Future improvement of the accuracy of weather prediction and climate models relies on a proper description of SIP in numerical simulations. For now, laboratory studies remain a primary tool for developing physically based parameterizations for cloud modeling. Over the past 7 decades, six different SIP-identifying mechanisms have emerged: (1) shattering during droplet freezing, (2) the rime-splintering (Hallett–Mossop) process, (3) fragmentation due to ice–ice collision, (4) ice particle fragmentation due to thermal shock, (5) fragmentation of sublimating ice, and (6) activation of ice-nucleating particles in transient supersaturation around freezing drops. This work presents a critical review of the laboratory studies related to secondary ice production. While some of the six mechanisms have received little research attention, for others contradictory results have been obtained by different research groups. Unfortunately, despite vast investigative efforts, the lack of consistency and the gaps in the accumulated knowledge hinder the development of quantitative descriptions of any of the six SIP mechanisms. The present work aims to identify gaps in our knowledge of SIP as well as to stimulate further laboratory studies focused on obtaining a quantitative description of efficiencies for each SIP mechanism

    Supercooled liquid water and secondary ice production in Kelvin-Helmholtz instability as revealed by radar Doppler spectra observations

    Get PDF
    Mixed-phase clouds are globally omnipresent and play a major role in the Earth's radiation budget and precipitation formation. The existence of liquid droplets in the presence of ice particles is microphysically unstable and depends on a delicate balance of several competing processes. Understanding mechanisms that govern ice initiation and moisture supply are important to understand the life cycle of such clouds. This study presents observations that reveal the onset of drizzle inside a similar to 600m deep mixed-phase layer embedded in a stratiform precipitation system. Using Doppler spectral analysis, we show how large supercooled liquid droplets are generated in Kelvin-Helmholtz (K-H) instability despite ice particles falling from upper cloud layers. The spectral width of the supercooled liquid water mode in the radar Doppler spectrum is used to identify a region of increased turbulence. The observations show that large liquid droplets, characterized by reflectivity values larger than 20 dBZ, are generated in this region. In addition to cloud droplets, Doppler spectral analysis reveals the production of columnar ice crystals in the K-H billows. The modeling study estimates that the concentration of these ice crystals is 3-8 L-1, which is at least 1 order of magnitude higher than that of primary ice-nucleating particles. Given the detail of the observations, we show that multiple populations of secondary ice particles are generated in regions where larger cloud droplets are produced and not at some constant level within the cloud. It is, therefore, hypothesized that K-H in- stability provides conditions favorable for enhanced droplet growth and formation of secondary ice particles.Peer reviewe

    Instrumentation for the High Ice Water Content (HIWC) Flight Campaigns

    Get PDF
    To Identify, Develop/Modify, and Qualify Cloud Physics Instrumentation for High Ice Water Content Characterization Flight Campaigns

    Measurements of Differential Reflectivity in Snowstorms and Warm Season Stratiform Systems

    Get PDF
    The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion chambers in which humidity and temperature are both stringently controlled. The overriding operational interest here is in the identification of regions prone to icing hazards with long horizontal paths. Two predominant regimes are identified: category A, which is typified by moderate reflectivity (from 10 to 30 dBZ) and modest +ZDR values (from 0 to +3 dB) in which both supercooled water and dendritic ice crystals (and oriented aggregates of ice crystals) are present at a mean temperature of −13°C, and category B, which is typified by small reflectivity (from −10 to +10 dBZ) and the largest +ZDR values (from +3 to +7 dB), in which supercooled water is dilute or absent and both flat-plate and dendritic crystals are likely. The predominant positive values for ZDR in many case studies suggest that the role of an electric field on ice particle orientation is small in comparison with gravity. The absence of robust +ZDR signatures in the trailing stratiform regions of vigorous summer squall lines may be due both to the infusion of noncrystalline ice particles (i.e., graupel and rimed aggregates) from the leading deep convection and to the effects of the stronger electric fields expected in these situations. These polarimetric measurements and their interpretations underscore the need for the accurate calibration of ZDR.United States. Federal Aviation Administration (Air Force Contract FA8721-05-C-0002

    Intercomparison of Large-Eddy Simulations of Arctic Mixed-Phase Clouds: Importance of Ice Size Distribution Assumptions

    Get PDF
    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds

    Processing of Ice Cloud In-Situ Data Collected by Bulk Water, Scattering, and Imaging Probes: Fundamentals, Uncertainties and Efforts towards Consistency

    Get PDF
    In-situ observations of cloud properties made by airborne probes play a critical role in ice cloud research through their role in process studies, parameterization development, and evaluation of simulations and remote sensing retrievals. To determine how cloud properties vary with environmental conditions, in-situ data collected during different field projects processed by different groups must be used. However, due to the diverse algorithms and codes that are used to process measurements, it can be challenging to compare the results. Therefore it is vital to understand both the limitations of specific probes and uncertainties introduced by processing algorithms. Since there is currently no universally accepted framework regarding how in-situ measurements should be processed, there is a need for a general reference that describes the most commonly applied algorithms along with their strengths and weaknesses. Methods used to process data from bulk water probes, single particle light scattering spectrometers and cloud imaging probes are reviewed herein, with emphasis on measurements of the ice phase. Particular attention is paid to how uncertainties, caveats and assumptions in processing algorithms affect derived products since there is currently no consensus on the optimal way of analyzing data. Recommendations for improving the analysis and interpretation of in-situ data include the following: establishment of a common reference library of individual processing algorithms; better documentation of assumptions used in these algorithms; development and maintenance of sustainable community software for processing in-situ observations; and more studies that compare different algorithms with the same benchmark data sets

    2008), The effect of dynamics on mixed-phase clouds: Theoretical considerations

    No full text
    ABSTRACT A theoretical framework has been developed describing nonequilibrium formation and maintenance of mixed-phase clouds. The necessary and sufficient conditions required to activate liquid water within a preexisting ice cloud, and thus convert it to mixed phase, are considered for three scenarios: (i) uniform ascent, (ii) harmonic vertical oscillations, and (iii) turbulent fluctuations. The general conditions are the following: 1) First necessary condition: The vertical velocity of an ice cloud parcel must exceed a threshold velocity to activate liquid water. 2) Second necessary condition: The activation of liquid water within an ice cloud parcel, below water saturation, requires a vertical ascent above some threshold altitude to bring the vapor pressure of the parcel to water saturation. Only when the first and second conditions are true do these conditions become sufficient for the activation of liquid water in ice clouds. These required conditions for the generation of mixed-phase cloud are supported by parcel modeling results and analogous conditions for a harmonic oscillation concerning the amplitude and tangential velocity of the parcel motion are proposed. The authors do not assume steadystate conditions, but demonstrate that nonequilibrium evolution of cloud parcels can lead to long-term steady existence of mixed-phase cloud

    Game equilibria and unification dynamics in networks with heterogeneous agents

    No full text
    We study game equilibria in a model of production and externalities in network with two types of agents who possess different productivities. Each agent may invest a part of her endowment (it may be, for instance, time or money) in the first of two time periods; consumption in the second period depends on her own investment and productivity as well as on the investments of her neighbors in the network. Three ways of agent’s behavior are possible: passive (no investment), active (a part of endowment is invested), and hyperactive (the whole endowment is invested). For star network with different productivities of agents in the center and in the periphery, we obtain conditions for existence of inner equilibrium (with all active agents) and study comparative statics. We introduce adjustment dynamics and study consequences of junction of two complete networks with different productivities of agents. In particular, we study how the behavior of nonadopters (passive agents) changes when they connect to adopters (active or hyperactive) agents
    corecore