16 research outputs found

    Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes.

    Get PDF
    Funder: Max-Planck SocietyFunder: St John’s College, CambridgeFunder: Fondation Raoul FollereauFunder: University of Zurich’s University Research Priority Program “Evolution in Action: From Genomes to Ecosystems”Funder: the Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP) at the University of TübingenBackgroundHansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period.ResultsHere, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria.ConclusionsOur findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions

    Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes

    Get PDF
    Background: Hansen’s disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease’s complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. Results: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae’s genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. Conclusions: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease’s global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy’s global history and can contribute to current models of M. leprae’s worldwide dissemination, including interspecies transmissions

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Thermal Conductivity of Detonation Nanodiamond Hydrogels and Hydrosols by Direct Heat Flux Measurements

    No full text
    The methodology and results of thermal conductivity measurements by the heat-flow technique for the detonation nanodiamond suspension gels, sols, and powders of several brands in the range of nanoparticle concentrations of 2–100% w/w are discussed. The conditions of assessing the thermal conductivity of the fluids and gels (a FOX 50 heat-flow meter) with the reproducibility (relative standard deviation) of 1% are proposed. The maximum increase of 13% was recorded for the nanodiamond gels (140 mg mL−1 or 4% v/v) of the RDDM brand, at 0.687 ± 0.005 W m−1 K−1. The thermal conductivity of the nanodiamond powders is estimated as 0.26 ± 0.03 and 0.35 ± 0.04 W m−1 K−1 for the RUDDM and RDDM brands, respectively. The thermal conductivity for the aqueous pastes containing 26% v/v RUDDM is 0.85 ± 0.04 W m−1 K−1. The dignities, shortcomings, and limitations of this approach are discussed and compared with the determining of the thermal conductivity with photothermal-lens spectrometry

    Approach to the Assessment of Size-Dependent Thermal Properties of Disperse Solutions: Time-Resolved Photothermal Lensing of Aqueous Pristine Fullerenes C<sub>60</sub> and C<sub>70</sub>

    No full text
    An approach is proposed for assessment of the thermal properties of aqueous pristine fullerene C<sub>60</sub> and C<sub>70</sub> dispersions (AFDs) at the level of 10<sup>–7</sup>–10<sup>–5</sup> mol L<sup>–1</sup> by photothermal (thermal-lens) spectroscopy for their application in medicine and technology. Along with relevant size-characterization techniquesdifferential scanning calorimetry (DSC) with the Gibbs–Kelvin equation and dynamic light scattering (DLS) techniquesthis approach provides an estimation of the size-dependent thermal properties of disperse solutionsthermal diffusivity, thermal effusivity [thermal inertia], and thermal conductivity. The values for AFDs under the conditions of the attained thermal equilibrium show good precision, and the cluster size estimations agree with the reference methods. The reconstruction of the thermal-lens characteristic time over the course of the blooming of the thermal-lens effect reveals a short increase in the apparent thermal diffusivity. This is accounted for by nonequilibrium heat transfer within fullerene clusters upon initial laser heating, which is supported by the independent estimations from widespread methods like high-resolution transmission electron microscopy, DLS, and DSC. Thermophysical parameters of the disperse phase estimated from transient thermal lensing are as follows: thermal diffusivity, 1.6–2.0 × 10<sup>–7</sup> m<sup>2</sup> s<sup>–1</sup> depending on fullerene concentration and up to 3.5 × 10<sup>–7</sup> m<sup>2</sup> s<sup>–1</sup>, more than 2-fold higher than for water; thermal effusivity, 6.7 × 10<sup>2</sup> J m<sup>–2</sup> K<sup>–1</sup> s<sup>–1/2</sup>, three times lower than for water

    Window tinting films for microwave absorption and terahertz applications

    No full text
    We demonstrate that commercially available window tinting films could be used multifunctionally, i.e., for electromagnetic shielding and absorption at frequencies below 1 THz along with visible light and ultraviolet protection. The fine control of the film optical properties by their structural composition can also be used to extend their performance to the lower frequency ranges, i.e., terahertz and microwave. The electromagnetic properties of two types of thin protective films loaded with either carbon or iron oxide micro- and nano-inclusions were studied in microwave (12-18 GHz) and terahertz (0.2-1.0 THz) frequency ranges vs their inner structure. The reflection and transmission coefficients of studied tint films were investigated using waveguide and free space measurements and compared with theoretical modeling results. The effective sheet resistance was estimated from the experimental data

    Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes

    No full text
    Background Hansen’s disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease’s complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. Results Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae’s genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. Conclusions Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease’s global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy’s global history and can contribute to current models of M. leprae’s worldwide dissemination, including interspecies transmissions

    Differences in spatial versus temporal reaction norms for spring and autumn phenological events

    Get PDF
    For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the environmental effects on timing (cogradient variation) or attenuate the effects (countergradient variation). To resolve spatial and seasonal variation in species' response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms tend to accentuate responses in spring (cogradient variation) and attenuate them in autumn (countergradient variation). As a result, among-population variation in the timing of events is greater in spring and less in autumn than if all populations followed the same reaction norm regardless of location. Despite such signs of local adaptation, overall phenotypic plasticity was not sufficient for phenological events to keep exact pace with their cues-the earlier the year, the more did the timing of the phenological event lag behind the timing of the cue. Overall, these patterns suggest that differences in the spatial versus temporal reaction norms will affect species' response to climate change in opposite ways in spring and autumn
    corecore