63 research outputs found

    ARLTS1 polymorphisms and basal cell carcinoma of the skin

    Get PDF
    Polymorphisms in the ARLTS1 gene, a member of the Ras super-family, have been associated with susceptibility in different cancer types. The involvement of the gene in apoptotic signalling motivated us to study the role of ARLTS1 polymorphic variations in basal cell carcinoma of the skin (BCC). In a case-control study, 529 cases diagnosed with BCC and 533 controls from Hungary, Romania and Slovakia were genotyped for the S99S (297G>A), P131L (392C>T), L132L (396G>C), C148R (442T>C) and W149X (446G>A) polymorphisms in the ARLTS1 gene. No significant association between any of the single nucleotide polymorphisms (SNP) and risk of BCC (S99S, odds ratio (OR) 0.96, 95% confidence interval (CI) 0.60-1.53; P131L, OR 1.31 95%CI 0.74-2.31; L132L, OR 0.50, 95%CI 0.02-7.07; C148R, OR 0.50, 95%CI 0.69-1.18; and W149X, OR 1.01, 95%CI 0.37-2.79) was detected. Furthermore, no significant difference in the distribution of haplotypes due to five polymorphisms in the ARLTS1 gene was found between the BCC cases and controls. Our data rule out an association between variants in ARLTS1 and risk of BCC in the investigated population

    Metabolism of Low-Dose Inorganic Arsenic in a Central European Population: Influence of Sex and Genetic Polymorphisms

    Get PDF
    BACKGROUND: There is a wide variation in susceptibility to health effects of arsenic, which, in part, may be due to differences in arsenic metabolism. Arsenic is metabolized by reduction and methylation reactions, catalyzed by reductases and methyltransferases. OBJECTIVES: Our goal in this study was to elucidate the influence of various demographic and genetic factors on the metabolism of arsenic. METHODS: We studied 415 individuals from Hungary, Romania, and Slovakia by measuring arsenic metabolites in urine using liquid chromatography with hydride generation and inductively coupled plasma mass spectrometry (HPLC-HG-ICPMS). We performed genotyping of arsenic (+III) methyltransferase (AS3MT), glutathione S-transferase omega 1 (GSTO1), and methylene-tetrahydrofolate reductase (MTHFR). RESULTS: The results show that the M287T (T-->C) polymorphism in the AS3MT gene, the A222V (C-->T) polymorphism in the MTHFR gene, body mass index, and sex are major factors that influence arsenic metabolism in this population, with a median of 8.0 microg/L arsenic in urine. Females C) polymorphism in the AS3MT gene on the methylation capacity was much more pronounced in men than in women. CONCLUSIONS: The factors investigated explained almost 20% of the variation seen in the metabolism of arsenic among men and only around 4% of the variation among women. The rest of the variation is probably explained by other methyltransferases backing up the methylation of arsenic

    Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma.

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.To search for new sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conducted a genome-wide association study of 38.5 million single nucleotide polymorphisms (SNPs) and small indels identified through whole-genome sequencing of 2230 Icelanders. We imputed genotypes for 4208 BCC patients and 109 408 controls using Illumina SNP chip typing data, carried out association tests and replicated the findings in independent population samples. We found new BCC susceptibility loci at TGM3 (rs214782[G], P = 5.5 × 10(-17), OR = 1.29) and RGS22 (rs7006527[C], P = 8.7 × 10(-13), OR = 0.77). TGM3 encodes transglutaminase type 3, which plays a key role in production of the cornified envelope during epidermal differentiation.Red Tematica de Investigacion Cooperative en Cancer RD06/0020/1054 Danish Cancer Society "Europe Against Cancer": European Prospective Investigation into Cancer and Nutrition (EPIC) deCODE Genetics/AMGE

    New basal cell carcinoma susceptibility loci.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.In an ongoing screen for DNA sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conduct a genome-wide association study (GWAS) of 24,988,228 SNPs and small indels detected through whole-genome sequencing of 2,636 Icelanders and imputed into 4,572 BCC patients and 266,358 controls. Here we show the discovery of four new BCC susceptibility loci: 2p24 MYCN (rs57244888[C], OR=0.76, P=4.7 × 10(-12)), 2q33 CASP8-ALS2CR12 (rs13014235[C], OR=1.15, P=1.5 × 10(-9)), 8q21 ZFHX4 (rs28727938[G], OR=0.70, P=3.5 × 10(-12)) and 10p14 GATA3 (rs73635312[A], OR=0.74, P=2.4 × 10(-16)). Fine mapping reveals that two variants correlated with rs73635312[A] occur in conserved binding sites for the GATA3 transcription factor. In addition, expression microarrays and RNA-seq show that rs13014235[C] and a related SNP rs700635[C] are associated with expression of CASP8 splice variants in which sequences from intron 8 are retained.NCI\SAIC-Frederick, Inc. (SAIC-F) 10XS170 Roswell Park Cancer Institute 10XS171 Science Care Inc. X10S172 Laboratory, Data Analysis and Coordinating Center (LDACC) HHSN268201000029C SAIC-F 10ST1035 HHSN261200800001E Brain Bank DA006227 DA033684 N01MH000028 University of Geneva MH090941 MH101814 University of Chicago MH090951 MH090937 MH101820 MH101825 University of North Carolina-Chapel Hill MH090936 MH101819 Harvard University MH090948 Stanford University MH101782 Washington University St Louis MH101810 University of Pennsylvania MH10182

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A germline variant in the TP53 polyadenylation signal confers cancer susceptibility

    Get PDF
    To identify new risk variants for cutaneous basal cell carcinoma, we performed a genome-wide association study of 16 million SNPs identified through whole-genome sequencing of 457 Icelanders. We imputed genotypes for 41,675 Illumina SNP chip-typed Icelanders and their relatives. In the discovery phase, the strongest signal came from rs78378222[C] (odds ratio (OR) = 2.36, P = 5.2 × 10−17), which has a frequency of 0.0192 in the Icelandic population. We then confirmed this association in non-Icelandic samples (OR = 1.75, P = 0.0060; overall OR = 2.16, P = 2.2 × 10−20). rs78378222 is in the 3′ untranslated region of TP53 and changes the AATAAA polyadenylation signal to AATACA, resulting in impaired 3′-end processing of TP53 mRNA. Investigation of other tumor types identified associations of this SNP with prostate cancer (OR = 1.44, P = 2.4 × 10−6), glioma (OR = 2.35, P = 1.0 × 10−5) and colorectal adenoma (OR = 1.39, P = 1.6 × 10−4). However, we observed no effect for breast cancer, a common Li-Fraumeni syndrome tumor (OR = 1.06, P = 0.57, 95% confidence interval 0.88–1.27)

    A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldPreviously, we reported germline DNA variants associated with risk of urinary bladder cancer (UBC) in Dutch and Icelandic subjects. Here we expanded the Icelandic sample set and tested the top 20 markers from the combined analysis in several European case-control sample sets, with a total of 4,739 cases and 45,549 controls. The T allele of rs798766 on 4p16.3 was found to associate with UBC (odds ratio = 1.24, P = 9.9 x 10(-12)). rs798766 is located in an intron of TACC3, 70 kb from FGFR3, which often harbors activating somatic mutations in low-grade, noninvasive UBC. Notably, rs798766[T] shows stronger association with low-grade and low-stage UBC than with more aggressive forms of the disease and is associated with higher risk of recurrence in low-grade stage Ta tumors. The frequency of rs798766[T] is higher in Ta tumors that carry an activating mutation in FGFR3 than in Ta tumors with wild-type FGFR3. Our results show a link between germline variants, somatic mutations of FGFR3 and risk of UBC.info:eu-repo/grantAgreement/EC/FP7/21807

    Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of european ancestry

    Get PDF
    Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 7 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 7 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 7 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P 64 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer
    corecore