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To search for new sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conducted
a genome-wide association study of 38.5 million single nucleotide polymorphisms (SNPs) and small indels iden-
tified through whole-genome sequencing of 2230 Icelanders. We imputed genotypes for 4208 BCC patients and
109 408 controls using Illumina SNP chip typing data, carried out association tests and replicated the findings in
independent population samples. We found new BCC susceptibility loci at TGM3 (rs214782[G], P 5 5.5 3 10217,
OR 5 1.29) and RGS22 (rs7006527[C], P 5 8.7 3 10213, OR 5 0.77). TGM3 encodes transglutaminase type 3,
which plays a key role in production of the cornified envelope during epidermal differentiation.

INTRODUCTION

Cutaneous basal cell carcinoma (BCC) is the most common
cancer of humans. While it is rarely metastatic, it can be

locally invasive and can cause considerable morbidity and eco-
nomic burden (1). In common with other forms of skin cancer,
the most significant environmental risk factor is UV exposure,
but both high- and low-penetrance sequence variants also
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affect risk (2–8). Sometimes the affected genes can be linked to
endogenous factors determining reactions to UV exposure (9).
The way in which some other variants act to promote BCC sus-
ceptibility is more obscure.

Previously we used whole-genome sequencing and imput-
ation to search for variants associated with predisposition to
BCC (8). In this study, we have increased the sample sizes and
the number of DNA sequence variants examined, to search for
new variants predisposing to BCC. Variants were identified by
whole-genome sequencing of 2230 Icelanders to an average
coverage of at least 10×. We detected �38.5 million single nu-
cleotide polymorphisms (SNPs) and small indels. We used im-
putation assisted by long-range haplotype phasing and
genealogy-based in silico genotyping to determine the geno-
types of these variants for 4208 Icelanders with BCC and 109
408 controls (8,10–12). We report on the discovery of two
new BCC predisposition loci: TGM3 and RGS22. Variants at
these loci passed the Bonferroni-adjusted P-value threshold of
genome-wide significance in Iceland: �1.2 × 1029. The asso-
ciated variants have minor allele frequencies (MAFs) of 0.17
and 0.14, respectively. We did not observe any new rare or low
frequency variants (,0.02 MAF) that passed the Bonferroni
threshold of significance in the Icelandic samples. Nevertheless,
the availability of association data derived from whole-genome
sequence information allows for fine mapping of loci in tandem
with their discovery.

RESULTS

We first examined BCC susceptibility loci that we had previously
identified in GWAS studies, in order to validate our approach and
to gain further evidence for the published associations. As shown
in Supplementary Material, Table S1, all of the previously

published association results were confirmed to greater levels of
significance. In each case, the odds ratio point estimate was slight-
ly diminished, probably as a result of a “winners’ curse” tending to
bias the original point estimates upwards (13,14). We also noted
that two variants, in TGM3 and RGS22, which had been observed
at suggestive levels of significance in our previous analysis (8),
now achieved the Bonferroni-adjusted level of genome-wide
significance.

As shown in Figure 1A, the current analysis revealed a cluster
of variants in and near the 5′ end of the TGM3 gene that was asso-
ciated with risk of BCC. The strongest signal originated from
rs214782[G] (P ¼ 3.1 × 10212, OR ¼ 1.29)(Table 1). Also in
the cluster was a missense variant rs214803 T13K. The
linkage disequilibrium (LD) between rs214782 and rs214803
is r2 ¼ 0.967, D′ ¼ 0.995 in the Icelandic data (see also Supple-
mentary Material, Table S2). In order to confirm the association
results, we generated Centaurus (15) single-track genotyping
assays for rs214782 (Top) and rs214803 (T13K). First, we used
them to confirm the imputation accuracy in the Icelandic popu-
lation (Supplementary Material, Table S3). We then used them
to investigate the associations in case–control sample sets
from Spain, Eastern Europe and Denmark. The evidence for rep-
lication of the BCC association was significant and showed no
evidence of heterogeneity in the non-Icelandic populations.
Combined with the Icelandic data, the overall association is
highly significant (P ¼ 5.5 × 10217, OR ¼ 1.29 for rs214782;
Table 1, Supplementary Material, Table S4). Adjustment for
age (at diagnosis for cases, at sampling for controls) had no
effect on the association (Supplementary Material, Table S5).
Accordingly, we concluded that TGM3 is a BCC susceptibility
locus.

The rs214803 (T13K) missense variant is predicted by SIFT to
be “tolerated” (score 0.29) and by PolyPhen to be “benign”
(score 0.018). Moreover, the signal from rs214803 (T13K) was

Figure 1. Association signals at the (A) TGM3 and (B) RGS22 loci. The upper panels show the BCC association signals [expressed as 2log10(P)] for variants iden-
tified by whole-genome sequencing and imputation. Positions of key single nucleotide polymorphisms discussed in the text are indicated. The middle panel shows
recombination rates calculated as described previously (39). The lower panel shows the locations of RefSeq genes in the region.
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Table 1. Association of SNPs in TGM3 and RGS22 with BCC

SNP Allele Chr Positiona Locus Description
in text

Sample set Number cases Number
controls

Frequency
in controls

OR 95% CI P

rs214782 G 20 2 229 970 TGM3 Top Iceland 4208b 109 408c 0.17 1.29 (1.20, 1.38) 3.1 × 10212

Combined
non-Icelandic

1480 4409 1.31 (1.17, 1.46) 3.5 × 1026

All combined 5688 113 817 1.29 (1.22, 1.37) 5.5 × 10217

rs214803 G 20 2 238 333 TGM3 T13K Iceland 4208b 109 408c 0.17 1.27 (1.18, 1.37) 3.9 × 10211

Combined
non-Icelandic

1434 4610 1.32 (1.18, 1.48) 2.2 × 1026

All combined 5642 114 018 1.28 (1.21, 1.37) 5.0 × 10216

rs59586681 T 20 2 168 310 TGM3 Distal Iceland 4208b 109 408c 0.39 0.86 (0.81, 0.91) 5.7 × 1027

Combined
non-Icelandic

1454 4386 0.85 (0.77, 0.94) 0.0012

All combined 5662 113 794 0.86 (0.82, 0.90) 2.5 × 1029

rs214830 G 20 2 269 105 TGM3 G654R Iceland 4208b 109 408c 0.31 0.91 (0.85, 0.97) 0.0024
Combined

non-Icelandic
1466 4543 0.94 (0.83, 1.05) 0.27

All combined 5674 113 951 0.91 (0.87, 0.97) 0.0014
rs7006527 C 8 101 093 681 RGS22 Top Iceland 4208b 109 408c 0.14 0.77 (0.70, 0.83) 9.0 × 10210

Combined
non-Icelandic

1427 4442 0.77 (0.67, 0.88) 2.3 × 1024

All combined 5635 113 850 0.77 (0.71, 0.82) 8.7 × 10213

aNCBI HG18 Build 36.
bTotal number of cases used for association testing, including 2726 chip-genotyped and 1482 in silico-genotyped individuals.
cTotal number of controls used for association testing, including 70 876 chip-genotyped and 38 532 in silico-genotyped individuals.
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not significant when adjusted for the effect of rs214782 (Top),
whereas rs214782 (Top) remained significant when adjusted
for rs214803 (T13K)(Supplementary Material, Table S6). It is
therefore quite conceivable that the pathogenic effect underlying
the main signal is exerted by rs214782 (Top) or one of the other
non-coding variants in high LD with it. Having whole-genome
sequence data meant that we could examine a fairly complete
set of such variants. Using conditional analysis, we determined
a set of correlated SNPs and small indels whose effects were stat-
istically indistinguishable from rs214782 (Top) at a significance
cut-off of P ¼ 1024 (see Materials and methods). A set of 40
such variants were identified, which included rs214803 (T13K)
(Supplementary Material, Table S7).

We then examined these variants for sequence overlap with
potential regulatory sites by cross-referencing them to
ENCODE data (16,17). Five of the 40 variants are in regulatory
regions identified by Ensembl with an ENSR number (Supple-
mentary Material, Table S7). Both the Top SNP rs214782 and
a highly correlated (r2 ¼ 0.997) variant rs214783 are located
in a DNAseI hypersensitive site with ChIP-Seq evidence of
binding several transcription factors in different cell lines, in-
cluding members of the Jun and Fos families. Another highly
correlated SNP (rs214799, r2 ¼ 0.967) occurs at a site with evi-
dence of binding FOXA1 and FOXA2 (Supplementary Material,
Table S7).

We examined rs214782 for an effect on nearby gene expres-
sion (cis-eQTL) using microarray data that we derived previous-
ly from blood and adipose tissue (18). Even though TGM3 is
primarily expressed in epidermis, we were able to detect a
strong cis-eQTL with rs214782 in blood (P ¼ 4.7 × 10220,
Fig. 2A). No other variant that we detected within a 1-Mb
window had a substantially more significant eQTL. We con-
firmed the effect of rs214782 on TGM3 expression by RT-PCR
(Fig. 2B). Note that increased risk of BCC is associated with
the low-expressor [G] allele of rs214782. Thus, it appears that
an effect on TGM3 gene expression is as likely as the T13K
coding variant to account for the BCC susceptibility at this locus.

We noted that a variant located 5′ to the TGM3 gene and with an
MAF approaching 0.40 showed a protective effect (OR ¼ 0.86,
P ¼ 5.7 × 1027 in Iceland, Table 1). This variant, designated
rs59586681 (Distal), is separated from rs214782 (Top) by a
region of moderate recombination (Fig. 1), and the two variants
are not well correlated (r2 ¼ 0.01, D′ ¼ 0.21 in Iceland, see also
Supplementary Material, Table S2). Conditional analysis of
the Icelandic data showed that rs59586681 (Distal) retains a nom-
inally significant signal once the effect of rs214782 (Top) is taken
into account (Padj ¼ 1.8 × 1024, ORadj¼ 0.90). The rs59586681
(Distal) association replicated significantly in the non-Icelandic
population samples, both with and without adjustment for the
effect of rs214782 (Top)(Table 1, Supplementary Material,
Table S6). This suggests that more than one pathogenic variant
is present at the TGM3 locus.

Because rs214803 (T13K) is potentially pathogenic, we
searched TGM3 for other coding variants that might be asso-
ciated with BCC. In addition to T13K, sequence analysis uncov-
ered seven missense variants within TGM3 for which imputation
and association analysis were possible. One of these, rs214830
(G654R) in the last exon of the gene, is quite common in Euro-
pean populations (0.31 MAF in Iceland). It showed a nominally
significant protective effect on BCC: P ¼ 0.0024, OR ¼ 0.91
(Table 1). As might be expected from the large recombination
rate peak separating rs214830 (G654R) from the other signal
SNPs (Fig. 1), the association with BCC persisted after adjust-
ment for the effects of rs214782 (Top) and rs59586681
(Distal) both individually and jointly (Supplementary Material,
Table S6). In the non-Icelandic samples, the effect of rs214830
(G654R) was consistent with Iceland but not independently sig-
nificant. Overall rs214830 (G654R) reached a significance level
of P ¼ 0.0014 (Table 1).

The G654 variant is predicted by SIFT to be “tolerated”
(score ¼ 1) and “benign” by PolyPhen (score ¼ 0). A correlated
variant occurs in the 3′ UTR of TGM3 (rs214831, r2 ¼ 0.81,
D′¼ 0.92), and it gave a similar association signal in Iceland:
P ¼ 8.52 × 1024, OR¼ 0.901. In a conditional analysis, the

Figure 2. The BCC risk allele rs214782[G] is associated with reduced expression of TGM3 in blood-derived RNA. (A) Expression of TGM3 RNA for three genotypes
of rs214782, measured in RNA from whole blood samples from 963 individuals using Agilent microarrays. The expression is shown as 10(average MLR) where MLR is
the mean log expression ratio and the average is over individuals with the indicated genotype. The vertical bars indicate the s.e.m. Significance was determined by
regressing the MLR values against the number of risk alleles that each individual carries, adjusting for age, sex, familial relatedness and differential cell count in blood.
(B) For confirmation, a subset of 168 RNA samples from (A) were tested using RT-PCR and analysed similarly.
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effects of these two variants could not be distinguished.Therefore,
the two variants are equally likely to be responsible for the
observed pathogenic effect.

At the second genome-wide significant locus, we observed a
cluster of intronic signals in RGS22 (Fig. 1B). The strongest
signal came from rs7006527 (OR ¼ 0.77; P ¼ 9 × 10210)
with an MAF of �0.14 in controls. Using a single-track Cen-
taurus assay for rs7006527, we confirmed the imputed results
in Iceland (Supplementary Material, Table S3) and genotyped
the foreign population samples. As shown in Table 1, the
signal replicated significantly outside Iceland (P ¼ 2.3 ×
1024, OR ¼ 0.77, see also Supplementary Material, Table S4).
The overall association including Iceland and replication
cohorts was highly significant (P ¼ 8.7 × 10213, OR ¼ 0.77).
Adjustment for age had no effect on the association (Supplemen-
tary Material, Table S5).

We carried out a conditional analysis to determine whether
there are other detectable signals present at the RGS22 locus.
After adjustment for the effect of rs7006527, we observed a
signal from a group of 42% MAF variants typified by
rs3133679 (Padj ¼ 7.0 × 1026, ORadj ¼ 0.88, Supplementary
Material, Table S6). Interestingly, the signal from this group of
variants was practically undetectable in the absence of adjust-
ment for rs7006527 (P ¼ 0.020, OR ¼ 0.94 for rs3133679 un-
adjusted). After adjusting for rs7006527 and rs3133679
jointly, no substantial signals remained at the RGS22 locus.
We typed rs3133679 in the foreign replication samples and
adjusted the results for the effect of rs7006527. Although
rs3133679 replicated nominally in the foreign samples without
adjustment for rs7006527, no significant Padj signal was
observed for rs3133679. Thus, although the Padj for rs3133679
was significant over all populations studied, the effect was en-
tirely attributable to the signal from the Icelandic population
(Supplementary Material, Table S6).

Using the method described earlier for TGM3, we found a set
of 24 variants at the RGS22 locus, which are statistically indistin-
guishable from rs7006527 (Supplementary Material, Table S8).
All were in RGS22 introns. Only one had been assigned an ENSR
identifier by Encode, and it lacked ChIP-Seq evidence of tran-
scription factor binding. There was no evidence of an eQTL asso-
ciated with rs7006527, nor was any significant eQTL affecting
RGS22 expression observed within a 1-Mb window.

DISCUSSION

In summary, we have found two new loci associated with BCC
susceptibility. The associations at both loci appear to be specific
to BCC, as we have not yet observed any significant associations
with other cancers. Moreover, they do not seem to affect the pig-
mentation traits sometimes associated with BCC susceptibility
variants (3).

RGS22 is a little-characterized, putative regulator of G-protein
signalling that is normally expressed only in testis (19). It is
reported to interact with guanine nucleotide binding proteins
GNA12, GNA13 and GNA11. The protein may be ectopically
expressed in some types of invasive carcinoma (20). The mechan-
ism behind the effect of RGS22 variants on BCC susceptibility
remains to be elucidated.

TGM3 encodes type 3 transglutaminase (TGase-3), an
enzyme with Ca2+-dependent transamidation activity in the
non-proliferating layers of the epidermis and in hair follicles
(21). Along with TGase-1 and TGase-5, the principle function
of TGase-3 in epidermis is the generation of protein–protein
crosslinks through the formation of isopeptide bonds between
peptidyl glutamine and lysine residues (22). In the outer layers
of the epidermis, keratinocytes terminally differentiate to form
the cornified layer or stratum corneum. This consists of flattened,
dead cells called corneocytes embedded in a lamellar lipid–
protein matrix. During formation of the corneocytes, a set of
structural proteins including involucrin, loricrin, periplakin
and desmoplakin and small proline-rich proteins (SPRs) are
cross-linked below the plasma membrane to form a resilient
structure known as the cornified envelope (CE). The CE gives
the cornified layer flexible mechanical resistance and provides
a scaffold for the formation of intercellular corneodesmosome
links and of the extracellular lamellar lipid–protein matrix
(23). In the initial formation of the CE, involucrin, periplakin
and desmoplakin are cross-linked by TGase-1 and TGase-5 to
form a monomolecular scaffold layer beneath the plasma mem-
brane. Subsequently, loricrin and SPRs are oligomerized by
TGase-3, which are then cross-linked into the scaffold. The
CE is subsequently linked to the keratin intermediate filament
network and, through the actions of TGase-1, to components
of the lamellar lipid matrix. In hair follicles, TGase-3 probably
functions to cross-link structural proteins of the hair fibre (24).

TGase-1 is indispensable for normal formation of epidermis. In
mice, Tgm1 knockouts die perinatally owing to dehydration from
a defective cornified layer and consequent skin barrier dysfunc-
tion (25). Human mutations in TGM1 cause type 1 autosomal re-
cessive congenital icthyosis, characterized by a scaly skin surface,
epidermal hyperplasia and barrier defects (23). On the other hand,
loss of TGase-3 has much more subtle effects. Tgm3 knockout
mice exhibit an in utero developmental delay in skin barrier for-
mation, but the cornified layer is normalized by the time of birth
and the mice do not suffer from perinatal dehydration. They do
display abnormalities of hair follicle function (26). In humans,
genetic variants in TGM3 have not been associated previously
with disease. Autoantibodies against TGase-3 are prevalent in
the cutaneous blistering condition dermatitis herpetiformis (27).
Loss of TGM3 expression has been reported to have prognostic
significance in oesophageal cancer (28).

How might a variant in TGM3 contribute to susceptibility to
BCC? One possibility is that compromised TGase-3 activity
might disrupt the normal differentiation and cell death pro-
gramme of corneocytes. The cell death mechanism in corneo-
cytes is neither apoptotic nor necrotic, but is a special type of
programmed cell death involving complete disintegration of
subcellular organelles and maturation of the CE. Orderly cell
death by cornification prevents intracellular contents from
being spilled in uncontrolled or necrotic cell death, which
could release DAMPs (danger associated molecular patterns)
and set off an inflammatory response within the epidermis
(29). Inflammation in epidermis will lead to epidermal hyperpla-
sia and creates a tumour-promoting environment (30). Secondly,
defective formation of the CE might compromise skin barrier
function. Epidermal hyperplasia is an invariable homeostatic re-
sponse to a failure of barrier function (23). Studies in mice have
implicated epidermal integrity, inflammatory responses and
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hyperplasia as key pathways in skin carcinogenesis (31–33).
Thus, we speculate that a genetic variant in TGM3 causing a
mild but chronic disturbance of corneocyte differentiation and
an ongoing barrier defect could increase susceptibility to BCC.

MATERIALS AND METHODS

Subjects

Iceland
Approval for the study was granted by the Icelandic National
Bioethics Committee and the Icelandic Data Protection Author-
ity. Affected individuals were identified through the Icelandic
Cancer Registry (ICR), which has maintained records of BCC
diagnoses since 1981. The records contained only cases of histo-
logically verified BCC, sourced from all the pathology laborator-
ies in the country that deal with these lesions. Icelandic controls
consisted of individuals selected from other ongoing association
studies at deCODE and who did not have a diagnosis of BCC
recorded in the ICR. Median age at diagnosis for cases was 66
years (range 10–104). All subjects were of European ancestry.

Eastern Europe
Details of this case–control set have been published previously
(34). Briefly, BCC cases were recruited from all general hospi-
tals in three study areas in Hungary, two in Romania and one
in Slovakia. Cases were identified on the basis of histopatho-
logical examinations by pathologists. The median age at diagno-
sis was 67 years (range 30–85). Controls were recruited from the
same hospitals. Individuals with malignant disease and diabetes
were excluded. Local ethical boards approved of the study. All
subjects were of self-reported European ancestry.

Spain Valencia
Eligible participants were recruited from the outpatient derma-
tology clinics of the Instituto Valenciano de Oncologı́a in Valen-
cia, Spain, starting from May 2003. Cases were patients with
histologically proven BCC presenting with superficial or
nodular lesions of ,1 cm in diameter. Clinical and pathological
data from these patients are prospectively collected by medical
history review, personal interview and clinical examination by
an expert dermatologist. Immunocompromised patients were
excluded as were those with any autoimmune disease, hereditary
disorders that include the presence of BCC (Gorlin syndrome
and xeroderma pigmentosum) and epidermodysplasia verruci-
formis. Controls were disease-free and ethnically matched
healthy subjects recruited at the Transfusion Centre of Valencia.
Phenotypic characteristics of controls were obtained by a self-
administered structured questionnaire. All subjects were of self-
reported European ancestry. All patients in the study had signed
an informed consent, and the study protocol was approved by the
institutional ethics boards.

Spain Zaragoza
BCC cases were recruited from the Oncology Department of
Zaragoza Hospital starting from September 2007. Individuals
with histologically proven invasive BCC were eligible to partici-
pate in the study. All subjects were of self-reported European an-
cestry. The median time interval from BCC diagnosis to

collection of blood samples was 14 months (range 1–53
months). Median age at diagnosis was 69 years (range 21–91).

Denmark
Subjects were participating in the “Diet, Cancer and Health”
study, which is a prospective study of 57 053 individuals
recruited at two centres in Denmark between December 1993
and May 1997 (35). Subjects were monitored during the follow-
up period, and BCC cases were identified through linkage to
entries in the Danish Cancer Registry. Each case identified was
matched to one control from the Diet, Cancer and Health
cohort based on gender, age on study entry and age at diagnosis
of the case. Median age at diagnosis was 59 (range 50–68). In
addition to extensive diet and lifestyle questions, subjects
answered questions regarding their skin sensitivity to sun,
tanning during summer, presence of nevi and presence of
freckles. All subjects were of self-reported European ancestry.

Whole-genome sequencing

Methods used for whole-genome sequencing, imputation and as-
sociation analysis have been described previously (8,10–12). In
this study, we used whole-genome sequence data derived from
2230 Icelanders sequenced to an average coverage of at least
10× using Illumina GAIIx and HiSeq2000 instruments at the
deCODE Genetics facility. This detected �38.5 million SNP
and small indel variants. All SNP and indel locations are given
in NCBI Hg18 Build 36 coordinates.

Illumina SNP chip genotyping

The Icelandic chip-typed samples were assayed with the Illu-
mina HumanHap300, HumanHapCNV370, HumanHap610,
1M, or Omni-Quad bead chips at the deCODE Genetics facility.
SNPs were excluded if they had (i) a yield of ,95%, (ii) a MAF
of ,0.01 in the population, (iii) an excessive deviation from
Hardy–Weinberg equilibrium (P , 1026), (iv) an excessive in-
heritance error rate (.0.001) or (v) if there was a substantial dif-
ference in allele frequency between chip types (in which case,
the SNP was removed from a single chip type if that resolved
the difference, but if it did not then the SNP was removed from
all chip types). All samples with a call rate of ,97% were
removed from the analysis.

Imputation and association testing

We used imputationassisted by long-range haplotypephasing and
genealogy-based in silico genotyping (8), to determine the geno-
typesof the 38.5millionvariants for4208IcelanderswithBCC (of
whom 2726 were genotyped by Illumina chip and 1482 by
genealogy-based in silico methods) and 109 408 control indivi-
duals (of whom 70 876 were genotyped by Illumina chip and 38
532 by genealogy-based in silico methods). For the HumanHap
series of chips, 304 937 SNPs were used for long-range phasing,
whereas for the Omni series of chips, 564 196 SNPs were used.
An initial imputation step was carried out on each chip series sep-
arately to create a single harmonized, long-range phased genotype
dataset consisting of 707 525 SNPs. Subsequently, this genotype
dataset was used in the second step of imputing the full set of 38.5
million variants that were tested for association. Association
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testing was performed using logistic regression, matching con-
trols to cases based on how informative the imputed genotypes
were and correcting for familial relatedness using genomic
control. For quality control purposes, association tests were
carried out to screen out variants that showed frequency differ-
ences between the HumanHap and Omni chip platform series.
Joint analysis of multiple case–control replication groups was
carried out using a Mantel–Haenszel model in which the groups
were allowed to have different population frequencies for
alleles but were assumed to have common relative risks. Tests
for heterogeneity were performed by comparing the null hypoth-
esis of the effectbeing the same inallpopulations to the alternative
hypothesis of each population having a different effect, using a
likelihood ratio test. We also calculated the I2 statistic, which
lies between 0 and100%anddescribes theproportion of total vari-
ation in the study estimates that is due to heterogeneity (36). For
conditional analyses, the allele count of each individual was
given as a covariate in the logistic regression. Note that for condi-
tional analyses, only chip-derived genotypes were used (i.e. we
did not use genealogy-based in silico genotypes) and the results
are unadjusted for genomic control.

Centaurus single-track genotyping

All non-Icelandic samples and a subset of the Icelandic samples
were genotyped using Centaurus single-track assays (15).
Primer sequences for assays are available on request. For each
SNP tested by single-track assay, all samples were genotyped
at the deCODE Genetics facility. Clustering algorithms were
applied, and manual editing was carried out in the same way
for all samples. Two standard DNA samples and water blanks
were included on every plate.

Assessment for potential overlap with regulatory regions

For each region examined (chr20:2,158,646-2,258,645 for TGM3
and chr8:101,064,000-101,170,000 for RGS22), we took the
strongest signal (i.e. rs214782 and rs7006527 for TGM3 and
RGS22, respectively) and identified all SNPs and small indels in
LD with it at r2 . 0.8 (excluding SNPs with low imputation infor-
mation values). We then adjusted the P-value and OR of the stron-
gest signal for the effect of each correlated SNP in turn. If the
resulting Padj was greater than an arbitrary threshold of 1024,
we considered that the correlated SNP in question could not be
resolved statistically from the SNP showing the strongest signal.
This yielded a set of 40 correlated variants for the TGM3 locus
and 24 variants for the RGS22 locus. Note that in this procedure,
theanalysis is limited toSNPsand small indels that were identified
by the whole-genome sequencing and which could be imputed
with information values of ≥0.9, [see (8)]. Note also that we
limited the search to the top signals at each locus, on the
grounds that little resolution is achieved by this method unless
the initial signal is reasonably strong. For each of the unresolvable
variants identified, we searched ENCODE data (16,17) for phys-
ical overlaps between the variant location and suspected regula-
tory sites as follows: firstly, we used Ensembl to determine
whether the variant location has been assigned an ENSR
number. Secondly, we examined the UCSC hg19 data with par-
ticular emphasis on the “Integrated Regulation from ENCODE”
supertrack set. Thirdly, we examined the data as presented in

HaploReg v2 (37). And fourthly, we examined the relevant
entry in RegulomeDB (38).

Expression analysis

Samples of RNA from human peripheral blood were hybridized
to Agilent Technologies Human 25K microarrays as described
previously (18). We quantified expression changes between
two samples as the mean logarithm (log10) expression ratio
(MLR) compared with a reference pool RNA sample. In compar-
ing expression levels between groups of individuals with different
genotypes, we denoted the expression level for each genotype as
10(average MLR), where the MLR is averaged over individuals with
the particular genotype. We determined s.e.m. and significance by
regressing the MLR values against the number of risk alleles
carried. We took into account the effects of age, sex and differen-
tial cell type count in blood as explanatory variables in the regres-
sion. P-values were adjusted for familial relatedness of the
individuals by simulation. For RT-PCR analysis, we converted
total RNA (from a subset of the samples that were used for the
microarrays) to cDNA using the High Capacity cDNA Archive
Kit (Applied Biosystems), primed with random hexamers. We
designed two assays covering exon–intron junctions in the
TGM3 gene and carried out quantitative PCR according to the
manufacturer’s instructions on an ABI Prism 7900HT Sequence
Detection System. We assessed differences inmean relative abun-
dance of TGM3 RNA between genotypic groups by regression, as
described earlier.

URLS

HaploReg v2, http://www.broadinstitute.org/mammals/haploreg/
haploreg.php; RegulomeDB, http://regulomedb.org/index.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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