31 research outputs found

    A novel method for determining the pressure dependent characteristics of polymer melt during micro injection molding

    Get PDF
    Micro injection molding is used to manufacture thin-walled parts with micron-scale structures. wherein high shear rate and high injection pressure process conditions appear. Consequently, the pressure dependence of polymer melt viscosity at the microscale cannot be ignored. However, in the simulation analysis of the microinjection molding process, almost all the Cross-WLF models of polymeric materials are omitting the pressure dependence parameter D3. This has a huge impact on the accuracy of the simulation results. Herein, a method that combines experimental characterization and filling simulation is proposed for the determination of the pressure dependence of polymer melts during micro injection molding. D3 in the Cross-WLF model of Polymethyl methacrylate (PMMA) and Cycloolefin copolymer (COC) is characterized by capillary rheometer and counter pressure chamber. The developed viscosity model including D3 is used for a filling simulation and is compared with the experimental results. The model flow simulation results showcases that the prediction accuracy of the viscosity model is significantly improved after considering D3. These results are of great significance, as they can be used to reduce the development cost and to improve the simulation accuracy of the micro injection molding filling process

    Coating powder beds with liquids and foams based on viscous formulations using a twin screw mixer:A continuous process study

    Get PDF
    Coating with viscous formulations has been essential in numerous industries as it can be a means for providing functionalization, additional properties, as well as other benefits. However, there have been scarce studies that have investigated and proposed methodologies in literature. Continuous coating of powders with viscous liquids poses as a promising technology, which has been mentioned in some studies, but has not yet been thoroughly investigated. This paper employs the use of image processing and analysis, in combination with statistical analysis of particles to evaluate the effectiveness of foams and liquids as a means of coating powder beds. Two different sizes of twin screw mixers that are working in continuous operation are employed, and a new continuous foaming device is fabricated and used for the experiments of coating. The effect of materials and process parameters (as for example rotational speed, and flowrate) on the quality of coating are investigated. Image analysis is used to assess the coating quality. The results clearly showcase the potential of using twin screw mixers for coating purposes and not only for mixing. The hypothesis that using large bubble foams to improve the coating of viscous liquids on particles is proven correct, as they provide higher quality coatings compared to their equivalent liquids, when used in the twin screw mixer. Surprisingly, using a larger scale twin screw mixer, does not show a substantial effect on the mixing, regarding quality, however there is still a requirement for mix optimization for achieving scale-up of this process. These results provide a new pathway for coating powders with viscous formulations in industrial applications, requiring less energy and effort in this process, and can pave the way towards introducing more sustainable industrial methodologies for coating

    Sample deposition onto cryo-EM grids: from sprays to jets and back

    Get PDF
    Despite the great strides made in the field of single-particle cryogenic electron microscopy (cryo-EM) in microscope design, direct electron detectors and new processing suites, the area of sample preparation is still far from ideal. Traditionally, sample preparation involves blotting, which has been used to achieve high resolution, particularly for well behaved samples such as apoferritin. However, this approach is flawed since the blotting process can have adverse effects on some proteins and protein complexes, and the long blot time increases exposure to the damaging air-water interface. To overcome these problems, new blotless approaches have been designed for the direct deposition of the sample on the grid. Here, different methods of producing droplets for sample deposition are compared. Using gas dynamic virtual nozzles, small and high-velocity droplets were deposited on cryo-EM grids, which spread sufficiently for high-resolution cryo-EM imaging. For those wishing to pursue a similar approach, an overview is given of the current use of spray technology for cryo-EM grid preparation and areas for enhancement are pointed out. It is further shown how the broad aspects of sprayer design and operation conditions can be utilized to improve grid quality reproducibly

    Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering

    Get PDF
    Cardiac cell therapy holds a real promise for improving heart function and especially of the chronically failing myocardium. Embedding cells into 3D biodegradable scaffolds may better preserve cell survival and enhance cell engraftment after transplantation, consequently improving cardiac cell therapy compared with direct intramyocardial injection of isolated cells. The primary objective of a scaffold used in tissue engineering is the recreation of the natural 3D environment most suitable for an adequate tissue growth. An important aspect of this commitment is to mimic the fibrillar structure of the extracellular matrix, which provides essential guidance for cell organization, survival, and function. Recent advances in nanotechnology have significantly improved our capacities to mimic the extracellular matrix. Among them, electrospinning is well known for being easy to process and cost effective. Consequently, it is becoming increasingly popular for biomedical applications and it is most definitely the cutting edge technique to make scaffolds that mimic the extracellular matrix for industrial applications. Here, the desirable physico-chemical properties of the electrospun scaffolds for cardiac therapy are described, and polymers are categorized to natural and synthetic.Moreover, the methods used for improving functionalities by providing cells with the necessary chemical cues and a more in vivo- like environment are reported

    Need for speed: Examining protein behavior during cryoEM grid preparation at different timescales

    Get PDF
    A host of new technologies are under development to improve the quality and reproducibility of cryoelectron microscopy (cryoEM) grid preparation. Here we have systematically investigated the preparation of three macromolecular complexes using three different vitrification devices (Vitrobot, chameleon, and a time-resolved cryoEM device) on various timescales, including grids made within 6 ms (the fastest reported to date), to interrogate particle behavior at the air-water interface for different timepoints. Results demonstrate that different macromolecular complexes can respond to the thin-film environment formed during cryoEM sample preparation in highly variable ways, shedding light on why cryoEM sample preparation can be difficult to optimize. We demonstrate that reducing time between sample application and vitrification is just one tool to improve cryoEM grid quality, but that it is unlikely to be a generic “silver bullet” for improving the quality of every cryoEM sample preparation
    corecore