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Abstract 

Cardiac cell therapy holds a real promise for improving heart function and especially of the 

chronically failing myocardium. Embedding cells into 3D biodegradable scaffolds may better 

preserve cell survival and enhance cell engraftment after transplantation, consequently 

improving cardiac cell therapy compared with direct intramyocardial injection of isolated cells. 

The primary objective of a scaffold used in tissue engineering is the recreation of the natural 

3D environment most suitable for an adequate tissue growth. An important aspect of this 

commitment is to mimic the fibrillar structure of the extracellular matrix, which provides 

essential guidance for cell organization, survival, and function. Recent advances in 

nanotechnology have significantly improved our capacities to mimic the extracellular matrix.  

Among them, electrospinning is well known for being easy to process and cost effective. 

Consequently, it is becoming increasingly popular for biomedical applications and it is most 

definitely the cutting edge technique to make scaffolds that mimic the extracellular matrix for 

industrial applications. 

Here, the desirable physico-chemical properties of the electrospun scaffolds for cardiac 

therapy are described, and polymers are categorized to natural and synthetic. Moreover, the 

methods used for improving functionalities by providing cells with the necessary chemical cues 

and a more in vivo- like environment are reported. 

 

Keywords: electrospinning, tissue engineering, cardiac cells, heart therapy, biopolymers, 

functional scaffold, surface modification 
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1. Introduction  

Cardiovascular diseases are the leading cause of disability, limiting the activity and eroding the 

quality of life of millions of both middle age adults and elderly each year. The Global Burden of 

Disease study estimated that 29.6% of all deaths worldwide (15.6 million deaths) were caused 

by CVDs in 2010 [1]. Among them, more than 7 million are due to ischemic cardiomyopathies 

which lead mainly to acute myocardial infarction and chronic heart failure [2]. Both the 

incidence and prevalence of the latter condition are steadily increasing, primarily because 

early revascularization of myocardial infarctions in industrialized countries results in a higher 

rate of survival and thus leaves an increasing number of patients at risk of developing a 

subsequent left ventricular dysfunction. 

Although heart transplantation remains the only radical treatment for end̻stage heart failure, 

its indications are limited by organ shortage and the complications associated with major 

immunosuppression. Mechanical assist devices are still primarily used as bridges to transplant 

(or recovery) and despite its ability to provide symptomatic relief, biventricular 

resynchronization fails in 20% to 30% of patients [3]. Finally, none of the large trials 

implemented over the last decade to investigate new drugs has yielded a positive outcome 

leading to an increased survival of heart failure patients, except for the recent paradigm trial 

which has reported the benefits of the angiotensin receptor-neprilysin inhibitor LCZ696 [4]. Put 

together, these observations have provided a rationale for exploring new therapeutic options, 

among which “regeneration” of the chronically failing heart by stem cells has raised a 

tremendous interest. 

Stem cell therapy aims at restoring some functionality in these scarred regions by providing a 

new pool of functional contractile elements [8] [9] [10]. However, although multiple cell types 

have been tested experimentally, only skeletal myoblasts and bone marrow̻derived cells have 

been assessed in large clinical trials, while cardiac “stem cells”, cardiospheres, and 

adipose̻derived stroma cells are still under current investigation [5]. Benefits have been found 

marginal and most likely due to the paracrine effects of the transplanted cells rather than to a 

true “regeneration” of the scarred myocardium originating from the graft. A thorough analysis 

of the reasons for this failure has led to identifying poor cell engraftment as a major 

contributor to suboptimal outcomes. A major reason for these suboptimal results is likely the 

low rate of engraftment and high mortality of the transplanted cells into diseased hearts. 

These two phenomena are caused by a mechanical leakage of cells [6][7][8] and subsequently 

worsened by an interplay of biologic factors that include inflammation, ischemia due to poor 

vascularization of the injected areas, and apoptosis subsequent to detachment of anchorage̻ 

dependent cells from their extracellular matrix (ECM), so-called anoikis [9]. The recognition of 

these contributing factors provides a rationale for embedding cells into 3D biodegradable 

scaffolds using tissue engineering that may better preserve cell survival and enhance cell 

engraftment after transplantation, consequently improving cardiac cell therapy compared with 

direct intramyocardial injection of isolated cells. 

Tissue engineering for cellular based transplantation has the following advantages: 

1. It can provide a 3D environment to the cells which is more reminiscent of the endogenous 

cardiac tissue. This patterning is critical for cell survival because it avoids the proteolytic 

dissociation which is required prior to injection; 

2. It allows delivering multiple cell populations: the stem cells under consideration and the 

“support” cells aimed at providing them with the trophic support required for their survival, 

differentiation, and migration; 

3. It can serve as a platform for growth factors delivery that should positively impact on the 

grafted cells as well as on the target myocardial environment. 
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Various tissue̻engineered scaffolds have been studied as a cardiac patch for myocardial repair 

and shown to prevent heart failure by increasing the mechanical strength of the infarct, 

thereby inhibiting adverse left ventricular remodeling and deterioration of cardiac function 

[10]. In order to build these 3D constructs, ECM components such as collagen and fibrin can be 

used to make elastic gels with compositions similar to the body’s ECM. Gels in an 

unpolymerized form can be mixed with cells, and the resulting polymerized matrix creates 

specific geometric shapes. In Zimmermann et al.’s study, collagen and cardiomyocytes (CMs) 

were combined into circular molds, which displayed interconnected, beating cells when 

implanted in infarcted rat hearts [11]. 

Alternatively, gels and transplantable cells can also polymerize in vivo after injection, 

permitting the cell̻matrix composite to assemble and conform to specific areas of the 

myocardium. Two separate studies in rats have used skeletal myoblasts in injectable fibrin 

matrices and embryonic stem cell in collagen matrices, respectively. Both studies reported 

small decreases in heart failure progression [12][13]. Despite all these different gel setups, 

some problems remain. The relatively low concentration of CMs limits the force of contraction 

and once again, adequate vascularization is a challenge unless cells endowed with an 

angiogenic potential are added to gel mixtures to foster new vessel formation [14]. 

Another approach has consisted of developing scaffold̻free cell sheets obtained by culturing 

cells onto temperature̻sensitive dishes so that, upon cooling, a cell sheet can be collected and 

overlaid on the diseased area [15][16]. The Okano’s group, which has pioneered this approach, 

has reported quite successful outcomes with different cell types (skeletal myoblasts, 

mesenchymal stem cells (MSCs), cardiac progenitors) [17]. The major advantage of this 

approach is to avoid any foreign material and the subsequent inflammatory response these 

materials may trigger. However, these cell sheets also raise practical issues associated with 

their frailty, the difficulty in safety manipulating them for transfer onto the target region and 

their propensity to fold and tear. These drawbacks have likely limited their clinical acceptance 

and fully justify the alternate use of scaffolds that feature better handling characteristics. 

As the primary objective of a scaffold used to build a tissue engineered patch is to recreate the 

natural 3D environment most suitable for an adequate cell and tissue growth, an important 

aspect of this commitment is to mimic the fibrillar structure of the ECM, which provides 

essential guidance for cell organization, survival, and function. Recent advances in 

nanotechnology have significantly improved our capacities to mimic the ECM via synthetic 

techniques originally developed in the fields of microfabrication for microelectronics, 

microfluidics [18][19] and of membrane separation technologies [20]. Several technologies 

have been investigated for the fabrication of polymeric scaffolds that mimic this geometry, 

including; solvent casting/particulate leaching, gas foaming, freeze drying, thermally induced 

phase separation, photolithography, electrospinning, rapid prototyping techniques such as 3D 

printing, laser ablation [21][22][23], except from the decellularization of tissues [24]. Each 

technique presents advantages and limitations, which have been reported in various review 

articles [25][26][27]. 

Among them, electrospinning is the only one that can be used for industrial applications as it 

can be effectively up-scaled. This is demonstrated by the continuous growth of electrospinning 

equipment in the market the last years [28]. Briefly, in the traditional electrospinning, a 

polymeric solution is fed through a thin needle opposite to a grounded collector and a high 

voltage is applied to form a jet of the solution that travels from the needle to the collector, 

where is deposited in the form of dried nanofibers. Many variations have been developed in 

the last decade for upscaling the process such as needle-free set-ups. The parameters that can 

be adjusted for the nanofibers formation include the solution properties (viscosity, 

conductivity, surface tension, molecular weight, concentration and architecture of the 

polymer), the process parameters (electric potential, flow rate, needle to collector distance, 
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collector shape and composition) and ambient parameters (temperature, humidity). This 

technique is well known for being easy to process and cost̻effective. Consequently, it is 

becoming increasingly popular for biomedical applications, and it is most definitely the 

cutting̻edge technique to make patches that mimic the ECM for industrial applications [28]. 

Concerning the material of use for electrospinning, a plethora of polymers have been tested, 

and most of them use organic solvents. Electrospun nanofiber matrices show morphological 

similarities to the natural ECM characterized by continuous fibers ranging from nano to micro 

scale, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts 

have also been made to modify nanofiber surfaces with several bioactive molecules to provide 

cells with the necessary chemical cues and a more in vivo-like environment. In addition, 

physico-chemical properties of nanofiber matrices can be controlled by manipulating 

electrospinning parameters to meet the requirements of a particular application [29]. 

All the above parameters render electrospinning as a very good candidate for the fabrication 

of scaffolds for cardiac tissue engineering which ideal properties are described in the next 

section. In the same line, another gain of electrospinning is the variety of nanofibrous 

structures that can be constructed beyond the morphology of the fiber. The advances in 

electrospinning set-up and mainly on the type of collector allows for the development of 

various constructs. For example, modules of electrospinning such as high-speed rotating drum 

and mandrel collectors can allow for the formation of aligned nanofibers. In addition, 

collectors designed with a specific structure on demand to the desirable application can work 

as a master for the formation of a nanofibrous construct of choice, e.g. valves, vessels. For 

example, electrospun nanofibers of natural biopolymer could be made as a monolayer on a 

honeycomb microframe and transformed by crosslinking into a mesh with controllable pore 

sizes, which can more closely mimic the ECMs [30][31]. Of course, there are techniques that 

are based on computer-aided design (CAD) on which a structure of choice can be fabricated, 

such as photolithography and 3D printing. Nevertheless, the main advantage of 

electrospinning is still the low-cost and the simplicity, renders it as a method that can be 

adapted even in a biological laboratory as neither specialized engineers nor infrastructure are 

required (e.g. clean-room facilities in the case of photolithography). It should be stated that all 

the aforementioned benefits of electrospinning do not apply exclusively to cardiac but also to 

other areas of tissue engineering. In the light of cardiac tissue engineering on which except 

from the structural characteristics, electro-mechanical properties (conductivity, elasticity) are 

of paramount importance, the versatility of electrospinning is an asset since conductive 

polymers and other additives can be co-electrospun in order to achieve the desired properties.  

In the current review an up to date overview of the electrospun scaffolds used so far for 

cardiac tissue engineering purposes is presented. In the vast majority, cardiac cells were 

seeded in the scaffolds and their proliferation was evaluated. Amongst them, the primacy 

belongs to CMs, as in most of the cases the final target is the treatment of the failing 

myocardium. Nevertheless, interesting studies, although much less, have been presented for 

the treatment of other parts of the heart such as the replacement of valves and vessels. The 

various materials and methods for improving electrospun scaffolds functionalities for cardiac 

tissue engineering are reviewed. 

 

2. Polymeric scaffold characteristics for cardiac tissue engineering 

Once the principle of using a scaffold has been adopted, some key parameters need to be 

determined. These are material composition, surface characteristics, mechanical properties, 

biocompatibility, degradation rate and cell seeding conditions. The conductivity of the scaffold 

also appears to play an important role on scaffolds used for cardiac tissue engineering. 

Production cost and manufacturing conditions compatible with regulatory guidelines for 
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human applications are additional factors that need to be taken into consideration. A 

comprehensive description of the requirements for a functional cardiac scaffold can be found 

in review articles such as [27][32][33], whereas herein a synopsis is presented. 

Myocardial tissue shows a hierarchical structure with aligned fibrous cells embedded into 3D 

honeycomb-like micro-patterns formed by both undulated perimysial collagen fibers and 

different proteins of the ECM [34][35]. Thus, a scaffold with fibrous structure is crucial for cell 

organization, survival, and function of the seeded cardiac cells. To respect anisotropic 

organization of cardiac tissue and promote development of a functional cardiac syncytium, the 

fibrous structure needs to be aligned. Several studies demonstrated that the presence of 

aligned surface facilitates the orientation and organization of CMs [36][37]. Moreover, high 

surface-to-volume ratio and porosity are indispensable elements for the migration of cells and 

vascularization.  

Regarding to the mechanical properties, it should be taken into consideration that the best 

scaffold for cardiac tissue regeneration should have a Young´s modulus between tens of kPa 

and 1MPa, since it has been reported that left ventricular stiffness is about 10-20 kPa at the 

beginning of diastole and in the range 0.2-0.5 MPa at the end of diastole [38]. Other studies 

indicated that the Young’s modulus of the native heart tissue is in the range of 10–15 kPa [39] 

while in the case of ischemic tissue, associated with fibrosis, it increases up to 30-50 kPa [40]. 

Furthermore, Engler et al. using isolating cardiac cells demonstrated that CMs were only able 

to form mature sarcomeres with regular beating on polyacrylamide gels of about 10 kPa [39]. 

On softer gels, sarcomeres were less spaced and not fully organized whereas on stiffer gels, 

myocytes contained more stress fibers and did not display sarcomeres.  

In addition, attention has been driven towards conductivity, another key characteristic of 

scaffolds for cardiac tissue engineering, given that cardiac cells beat using electric signals 

which transport through the myocardium. Electrical stimulus is known to control surface 

properties by controlling surface charge [41]. The same principle is applied to control the 

attachment, proliferation, and differentiation of cells [42]. Kai et al. measured an increase in 

connexin 43 (gap junction protein marker involved in electrical signal transmission expression), 

which is the primary cardiac connexin, in conductive scaffolds comparing to other non-

conductive ones [43]. The application of electrical stimulus showed to be in favour of the 

creation of cardiac tissue in several studies. Tandon et al. showed that by inducing electric 

stimulation, they promoted the formation of long and well-aligned sarcomeres as well as 

intercalated discs between aligned Z line, similarly to that of healthy cardiac tissue [44]. 

Spontaneous and synchronous beating of cardiac cell when cultured on conductive scaffolds 

was reported by Dvir et al. [45]. In other studies, the expression of several cardiac-related 

markers, i.e. Nkx2.5, GATA4, cardiac troponin t, troponin I, connexin 43, desmin, slow myosin 

and fast myosin were expressed while culturing stem cells (human MSCs and rat bone marrow 

MSCs) on conductive scaffolds and subjected to electrical stimulation [46][47]. 

Two other important issues to be taken into consideration are biocompatibility and 

biodegradability, which allow support of both the appropriate cellular activity and the 

generation of new tissues. In some cases, bioresorbability is required. Generali et al., described 

thoroughly the requirements of bioresorbable scaffolds for cardiovascular tissue engineering, 

and their mechanisms of degradation once they have been implanted [48]. The biomaterials to 

be used for the elaboration of the scaffolds for heart tissue regeneration need to be 

compatible with the natural tissue and the cells with a low inflammatory response after 

implantation. The biomaterials also need to support cell adhesion, differentiation, and 

proliferation. Natural polymers such as collagen, fibrin and polysaccharides have shown their 

potential for leading to efficient cell differentiation and enhanced interaction with cardiac 

cells. However, most of the natural polymers suffer from poor mechanical properties. 

Synthetic biocompatible/biodegradable polymers such as polyesters are a solution when 
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higher mechanical properties are required. The next section is dedicated to the detailed 

presentation of the most common electrospun scaffolds made of natural and synthetic 

polymers, which are used in cardiac tissue engineering. 

The last important issue is related to cell seeding conditions. A diverse range of cell seeding 

techniques has developed over the past decades to promote cell seeding efficiency and 

consequently long-term graft function. The most common method used in tissue engineering 

is static seeding, in which a concentrated cell suspension is passively introduced on a scaffold. 

This technique has several limitations that result in low seeding efficiency and minimal cell 

penetration into the scaffold. To overcome these limitations, alternate seeding techniques 

have been developed, including dynamic, magnetic, vacuum, electrostatic, and centrifugal 

seeding. Each technique presents different advantages, but the final selection of the 

appropriate method should be made in accordance with the polymer and the scaffold 

fabrication techniques. Advances in the area of microfabrication and microfluidics lead to the 

development of different types of bioreactors such as rotating and perfusion-based [49] 

[50][51].  

From all the above, it is evident that the ideal scaffold for cardiac tissue engineering would be 

the one that combines the following characteristics. (a) Appropriate mechanical properties 

that match the mechanical properties of the native cardiac tissue (anisotropy, elasticity, 

contractility etc.) (b) Appropriate structure that mimics the microenvironement of the native 

cardiac tissue (fibrous anisotropic alignment characteristic of the myocardium, porosity, 

nanomorphology etc.) (c) Appropriate surface (bio)chemistry to promote cardiac cell 

attachment, proliferation, viability, similar to this of the native cardiac tissue (biocompatibility, 

wettability, etc.) (d) Appropriate conductivity of the scaffold to allow propagation of electrical 

stimulation which as discussed above has been proven to have a positive effect on cell 

behaviour. In the next sections of this study, the methods and approaches used to try to 

achieve these desired functionalities are presented and discussed.  

 

3. Polymeric materials: natural and synthetic 

The various requirements for functional cardiac tissue scaffolds have resulted in the 

development of a plethora of different fabrication approaches and materials utilization. 

Electrospinning is ranked as the most popular method of fabricating nanofiber scaffolds via 

synthetic engineering, and it has already shown a number of advantages for tissue engineering 

purposes [52][53][54][55].  A statistical graph of the articles published over the last 12 years 

using electrospun scaffolds for cardiac tissue engineering applications is depicted in figure 1. 

The first article in the area was published in 2004. From then on, there is an evident increasing 

interest in this type of bioscaffolds. 

Generally speaking, the electrospun nanofibers can be manufactured at low cost from 

different types of polymers. They can be engineered to have different mechanical and 

biochemical properties. The biopolymers used are usually categorized into natural and 

synthetic [56][57]. Both categories have advantages and drawbacks. Natural polymers have 

intrinsically the necessary biochemical cues for cells attachment and proliferation. Their 

degradation products are non-toxic and have a low immune response. However, most of this 

category of polymers requires an extra crosslinking step to become insoluble in aqueous-based 

solutions such as culture media. The crosslinking may affect not only their 3D structure and 

porosity, but also their biocompatibility due to the introduction of non-biocompatible chemical 

agents [58]. In addition, the selection of the correct solvent system is crucial in order to avoid 

or reduce denaturation. Synthetic polymers have high reproducibility and have a simple quality 

control process. Moreover, their cost is much lower in comparison to the natural ones and 

their mechanical properties can be tuned more effectively. But they are missing of biochemical 
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cues which should be introduced either via adding an extra step of functionalization or via 

combining them with natural polymers. 

 

   
Figure 1. Articles published over the last 12 years proposing electrospun scaffolds for cardiac tissue 

engineering. 

 

3.1 Natural polymers 

The common natural polymers used in cardiac tissue engineering include collagen, fibrinogen, 

chitosan, gelatin, elastin and silk. 

Collagen is the predominant material out of the natural polymers, its term comes from the 

Greek words “κόλλα” and “γεννώ” that literally means “glue producer” and constitutes the 

main component of the ECM. Matthews et al demonstrated that collagen may be used to 

produce a nearly ideal scaffold for tissue engineering [59], whereas Yow et al showed that 

collagen can also be electrospun with other types of polymers, allowing efficient proliferation 

of human MSCs and maintenance of their multipotency for up to 7 days [60].  

The main collagens of interest to cardiovascular engineering are the collagen types I and III. 

Collagen is an essential component of myocardial connective stroma, which is mainly 

composed of type I and III fibrillar collagen, and its arrangement may contribute to preserve 

heart microarchitecture and chamber geometry [61]. Several reports have emphasized that 

the architecture of myocardial collagen fibers, in particular of the endomysium, may be 

involved in the regulation of the mechanical activity of the heart [62]. In addition, collagen has 

a long-standing safety record for medical applications, which should streamline translational 

processes towards clinics [58]. 

Clinically approved collagen electrospun scaffolds have been used as supports for H9c2 

cardiomyoblasts culture. Among different types of collagen samples, it was found that 

atelocollagen can produce electrospun fibers of better quality than acid and basic fibrous 

collagen. Immunostaining for actin and nuclei demonstrated the colonization of the scaffold 

under optimized crosslinking conditions, where the cardiomyoblasts were spread all over the 

scaffold and showed a nice structure of their actin filaments [63]. 
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Figure 2. Improvement of cardiac function in a non-ischemic dilated mouse model following epicardial 

implantation of the cellularized collagen scaffold. A) SEM image of the fibrous scaffold; B) 

Biocompatibility test; C) Cellularisation, immunolabeling against α-actinin of hiPS-CM seeded onto a 

collagen scaffold for 3 days.; D) Presence of new vessels after grafting. Scale bars  for A) 2 µm; B) 100 

µm; C) 20 µm ; D) 30 µm. Reprinted with permission from [64]. 

 

This type of collagen electrospun scaffolds has been recently used for the delivery of human 

induced pluripotent stem cell-derived CMs (hiPS-CM) in a mouse model of dilated 

cardiomyopathy (DCM) (figure 2). Acellular collagen scaffolds were first implanted in both 

healthy mice and in those where DCM was induced by a cardiac-specific invalidation of serum 

response factor (SRF). Seven and fourteen days after implantation, the safety of the scaffold 

was demonstrated by echocardiography and histological assessments. The subsequent step of 

implantation of the scaffolds seeded with hiPS-CM in DCM induced mice, using cell-free 

scaffolds as controls, revealed that after fourteen days, heart function had decreased in 

controls while it remained stable in the treated mice. This pattern was associated with an 

increased number of endothelial cells, in line with the greater vascularity of the scaffold. 

Moreover, a lesser degree of fibrosis consistent with the upregulation of several genes 

involved in ECM remodeling was observed. These results support the interest of the proposed 

hiPS-CM seeded electrospun scaffold for the stabilization of the DCM outcome with potential 

for its clinical use in the future [64]. 

Fibrinogen is a glycoprotein, synthesized by the liver and found freely circulating in the 

bloodstream which plays a major role in clotting. Fibrinogen has proved to induce improved 

cellular interactions and scaffold remodeling compared to synthetic scaffolds. It has the ability 

to bind with high affinity to functional vascular endothelial growth factor (VEGF), fibroblast 

growth factor (FGF), and a number of other cytokines [65]. Even if the ability to create 

fibrinogen nanofibers by electrospinning has been demonstrated, more studies are required 

for their in vitro cellular interactions behaviour. As a first study, McManus et al. cultured 

neonatal rat cardiac fibroblasts onto fibrinogen electrospun scaffolds. Those cultures were 

treated to regulate scaffold degradation by either supplementing serum-containing media with 

aprotinin or crosslinking the scaffolds with glutaraldehyde vapor. Cell culture demonstrated 

that fibroblasts readily migrate into and remodel electrospun fibrinogen scaffolds with 

deposition of native collagen [66]. 

Another natural polymer that exhibits desirable characteristics for tissue engineering is chitin, 

along with its deacetylated derivative, chitosan. Chitin is the second most abundant 
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polysaccharide after cellulose, and has a similar structure [67]. Chitosan, apart from its 

biocompatibility, biodegradability, non-toxicity, has low cost. Electrospun chitosan was utilized 

to provide structural scaffolding characterized by scale and architectural resemblance to the 

ECM in vivo. Hussain et al. studied ventricular CMs from neonatal rats in various culture 

conditions (i.e., mono- and co-cultures) for their viability and function by using electrospun 

chitosan-based nanofiber scaffolds [68]. The results demonstrated that the chitosan 

nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good 

cellular attachment and spreading in the presence of the adhesion molecule fibronectin. CM 

mono-cultures resulted in a loss of CM polarity and islands of non-coherent contractions. 

However, the CM-fibroblast co-cultures resulted in polarized CM morphology and retained 

their morphology and function for long-term culture. The Cx43 expression in the fibroblast co-

culture was higher than in the CM mono-culture and endothelial cell co-culture. In addition, 

fibroblast co-cultures demonstrated synchronized contractions involving large tissue-like 

cellular networks. This first attempt to test chitosan nanofiber scaffolds as a 3D cardiac co-

culture model demonstrated that chitosan nanofibers can serve as a potential scaffold that can 

retain cardiac structure and function. 

Elastin is composed of covalently cross-linked molecules of its precursor, tropoelastin, a 

soluble, non-glycosylated and highly hydrophobic protein. Tropoelastin expression and 

subsequent elastin synthesis typically occurs in fibroblasts, vascular SMCs, endothelial cells, 

and chondrocytes [69]. However, very limited studies have been published for electrospun 

scaffolds containing only elastin for cardiac tissue engineering purposes [58] [70]. In most of 

the cases elastin constitutes one part of an electrospun composite as it will be described 

subsequently. 

Silk is composed of a glue-like sericin protein which role is to hold fibers together, and a fibroin 

filament component which acts as the mechanical backbone. Natural silk fibers have tensile 

strength and yield at fracture values comparable to synthetic polymeric fibers, and can be 

slowly absorbed in vivo as biocompatible amino acids. In tissue engineering applications, 

typically silk fibroin is utilized. A blend of silk fibroin and poly (ethylene oxide) (PEO) was used 

for the fabrication of electrospun fibers, where both human aortic endothelial cells (hAEC) and 

human coronary artery smooth muscle cells (hCASMC) were seeded [71]. Both hAECs and 

hCASMCs demonstrated an affinity for the electrospun silk fibroin/PEO. hCASMCs were shown 

to elongate and align themselves with SF fibers as well as produce native collagen ECM. 

Balasubramanian et al. fabricated bio-composite scaffolds by using fibrinogen and gelatin in 

two different weight ratios and performing cross-linking [Fib/Gel (1:4)-CL; Fib/Gel(2:3)-CL], 

while cross-linked fibrinogen scaffolds were used as the control sample [72]. The tensile 

strength and the stiffness values of Fib/Gel(1:4)-CL matrices were found to be 0.0125 and 0.46 

MPa respectively, which were much similar to the innate properties of the native myocardium. 

Cell culture studies using human CMs revealed higher cell proliferation on Fib/Gel(1:4)-CL 

scaffolds compared to Fib/Gel(2:3)-CL scaffolds, which was even higher than the cell 

proliferation on cross-linked fibrinogen scaffolds. Moreover, the CMs seeded on composite 

substrates expressed typical functional cardiac proteins such as α-actinin, troponin I, connexin-

43, and myosin heavy chain, thereby raising the possibility of applications in cardiac tissue 

engineering. 

 

Table I. Electrospun scaffolds based on natural polymers in cardiac tissue engineering. 

Material 
Fibers 

morphology 
Cultured cells In vitro In vivo 

Publication 

year 
Ref. 

fibrinogen random 
rat neonatal cardiac 

fibroblasts 
�   2007 [66] 
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silk fibroin/PEO random 

human aortic 

endothelial cells (hAEC) 

& human coronary 

artery smooth muscle 

cells (hCASMC) 

�   2008 [71] 

chitosan random 

ventricular CMs from 

neonatal rats, & 

coculture with 

fibroblasts 

�   2013 [68] 

fibrinogen/gelatin random CMs �   2013 [72] 

albumin 
random & 

aligned 
rat neonatal CMS �   2014 [73] 

collagen random H9c2 �   2015 [63] 

collagen random CMs, hiPSCs �  

� mouse 

model of 

DCM 

2016 [64] 

 

Moreover, a 3D cardiac patch fabricated from albumin fibers has been recently reported [73].  

The fabricated aligned and randomly oriented electrospun albumin fibers had improved 

elasticity and were capable of adsorbing serum proteins, such as laminin, leading to strong 

cell-matrix interactions. Additionally, due to the functional groups on their backbone, the 

fibers could be chemically modified with essential biomolecules. Scaffolds culture with rat 

neonatal CMs induced the assembly of aligned cardiac tissues with high aspect ratio (length-to-

diameter ratio) CMs and massive actinin striation, which was more significant in the case of 

the aligned scaffolds. Compared to synthetic PCL fibrous scaffolds, CMs cultured within aligned 

or randomly oriented scaffolds formed functional tissues, exhibiting significantly improved 

function that generated strong contraction forces. 

Table I summarizes the scaffolds characteristics, in terms of material used, fibers morphology 

and in vitro/in vivo studies for the case of using natural polymers for electrospinning for 

cardiac tissue engineering. From the above, it is concluded the significance of adjusting the 

elasticity of the scaffolds. Regarding to the fibers alignment, only in the case of albumin both 

aligned and random fibers were tested where the first ones led to improved functional tissues. 

It is evident that more studies in the future should be performed using aligned structures 

which better mimic the native cardiac tissue anisotropy as it has been reported in the section 

2. The materials with better performance so far proved to be collagen, chitosan, albumin and 

silk with the latter possessing superior mechanical properties, especially for vascular grafts. 

The importance of co-culture CMs with fibroblasts is another aspect that should be taken into 

account for better mimicking of the natural ECM microenvironment and is an indication that 

research should focus towards this direction. 

 

3.2 Synthetic polymers 

There is a plethora of synthetic polymers used for the fabrication of electrospun scaffolds, 

containing not only one polymer but in the vast majority combinations of different ones 

and/or combinations with natural polymers for the enhancement of their properties. Their 

main advantage is their electrospinnability and cost effectiveness, but on the other hand 

treatment/modification of their surface is usually needed for cell culture purposes. 
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3.2.1 Poly(ε-caprolactone)-based scaffolds 

The results of the literature research have clearly revealed that the synthetic material of 

choice for the majority of scientists is poly(ε-caprolactone) (PCL). Shin et al. have shown that 

PCL fiber meshes of 250 nm average fiber diameter suspended on a wire ring support 

attachment and contraction of neonatal rat CMs in vitro [74]. On day 3, CMs start to contract 

weakly and in an unsynchronized fashion. These contractions become stronger and 

synchronized as time progresses. CMs adhered, populated the entire scaffold mesh, and 

stained positively for cardio-specific proteins [75]. This highly porous non-woven PCL mesh 

functions as a temporary ECM that enables the cells to adhere, spread, proliferate and 

establish electrical communications between layers creating synchronized beating. This mesh 

did not restrict the contractile functions of the CMs and the wire ring provides passive tension 

that supports maturation of the beating CMs, and may improve handling of the construct 

[76][77]. 

Howbeit, the high stiffness and hydrophobicity of the PCL fiber mesh does not provide 

significant cell attachment and proliferation in cardiac tissue engineering. Many studies have 

been carried out towards the improvement of PCL characteristics, for example Venugopal et al. 

proposed a blend of PCL and collagen types I and III [78]. The tensile modulus of the structures 

was 18 MPa with a tensile strength of 7.79 MPa, appropriate for a blood vessel conduit. 

Furthermore, the proliferation of coronary artery smooth muscle cells (CASMCs) seeded on 

PCL/collagen scaffolds has significantly increased. 

The combination of PCL with different natural polymers such as collagen, elastin and gelatin 

has revealed that electrospun PCL/gelatin scaffolds showed a higher tensile strength when 

compared to the other hybrid scaffolds according to Heydarkhan-Hagvall et al. [79]. The effects 

of pore size on cell attachment and migration was determined by in vitro studies using 

adipose-derived stem cells culture, where cell migration into the scaffold was predominantly 

seen in the PCL/gelatin hybrid.  

In another study, random and aligned PCL/gelatin composite nanofibrous scaffolds were 

electrospun to structurally mimic the oriented ECM [80]. Results indicated that PCL/gelatin 

nanofibrous scaffolds possessed smaller fiber diameters (239 ± 37 nm for random fibers and 

269 ± 33 nm for aligned fibers), increased hydrophilicity, and lower stiffness compared to 

electrospun PCL nanofibers. The aligned PCL/gelatin nanofibers showed anisotropic wetting 

characteristics and mechanical properties, which closely match the requirements of native 

cardiac anisotropy. Rabbit CMs were cultured on electrospun random and aligned nanofibers 

to assess the biocompatibility of scaffolds, together with its potential for cell guidance. It was 

revealed that the aligned PCL/gelatin scaffold greatly promoted cell attachment and alignment 

because of the biological components and ordered topography of the scaffolds.  

Reddy et al. proposed a compound of PCL and an oligomer hydrogel [Bisphenol A ethoxylated 

dimethacrylate (BPAEDMA)] for the fabrication of electrospun scaffolds [81]. The elastic 

modulus of PCL/BPAEDMA nanofibrous scaffolds was found to be decreased with the increase 

of the BPAEDMA weight fraction. Compound scaffolds containing 75 wt % BPAEDMA oligomer 

hydrogel exhibited lower modulus (3.55 MPa) and a very low contact angle (25
o
). BPAEDMA 

with high degree of ethoxylation resulted to highly flexible elastomeric hydrogels when treated 

by UV radiation. The contained soft ethylene oxide segments of the blended oligomer provided 

flexibility and allowed bioadhesion of cells, while the polymerizable methacrylate end groups 

supplied mechanical strength tunability. In addition, these elements are both non-toxic and 

non-immunogenic, which are two essential requirements for biocompatible implantable 

materials. Photopolymerization of this oligomer led to the formation of flexible elastomeric 

hydrogel films and nanofibers [82]. Rabbit  CMs cultured for 10 days on these PCL/ BPAEDMA 

scaffolds, remained viable and expressed cardiac troponin and alpha-actinin proteins for the 
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normal functioning of myocardium, where cell adhesion and proliferation were significantly 

increased on scaffolds containing 75 wt % BPAEDMA. 

Chen et al. managed to seed murine iPSCs (miPSCs) directly on a 3D PCL nanofibrous scaffold – 

which was previously coated with a layer of gelatin - and initiated non-directed, spontaneous 

differentiation using the monolayer method [83]. At day 15 of differentiation, miPSCs 

differentiated into functional CMs on the 3D PCL nanofibrous scaffold, as evidenced by positive 

immunostaining of cardiac-specific proteins including cardiac troponin T (cTnT) and myosin 

light chain 2a (MLC2a). In addition, flow cytometric analysis of cTnT-positive cells and cardiac-

specific gene and protein expression of cTnT and sarcomeric α-actinin,  demonstrated that the 

CM differentiation of miPSCs was more efficient on the 3D PCL nanofibrous scaffold than on 

normal tissue culture plates .  

Furthermore, Fleischer et al. fabricated a 3D spring-like fiber scaffold of PCL for cardiac tissue 

engineering, in view that coiled fibers have a key role within the natural fibrous matrix of the 

myocardium, allowing the synchronous contraction and relaxation of cardiac cell bundles with 

minimal energy loss [84]. The hypothesis was that since in vivo straightening and re-coiling of 

these fibers allows stretching and contraction of the myocardium in the direction of the CMs, 

such a scaffold can support the assembly of a functional cardiac tissue capable of generating a 

strong contraction force (figure 3.1). Rat CMs engineered within 3D thick spring-like fiber 

scaffolds formed a functional tissue exhibiting significantly improved function, including 

stronger contraction force, higher beating rate, and lower excitation threshold, compared to 

straight fiber scaffolds. These scaffolds, composed of tortuous fibers, had an average pore area 

of 44000 mm2, corresponding to a pore diameter of 470 mm which allowed the penetration of 

cells and their assembly into bundles of myocytes. 

 

 

Figure 3. (1). Schematic representation of a CM contraction and relaxation on an ECM fiber: A) Spring-

like fibers support cell stretching by providing physical support without resistance, while B) straight 

fibers resist CM stretching. (C) SEM image of scaffolds prepared from coiled fibers. Scale bar: 50 mm 
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Reprinted with permission from [84]. (2) Schematic diagram explaining the fabrication process of a 

model fibrosa layer. Reprinted with permission from [85]. 

 

Guex et al. demonstrated that radio-frequency plasma surface functionalized electrospun PCL 

fibres provide a suitable matrix for bone-marrow-derived MSCs cardiac implantation. The 

plasma treatment method characteristics will be reported in the section 4.2.2. The designed 

cardiac patch, acellular vs. seeded with MSCs, was evaluated in a rodent model of chronic 

myocardial infarction (MI) and it was revealed that MSC-seeded plasma-coated PCL grafts 

stabilized cardiac function and attenuated dilatation. Significant relative decreases of 13% of 

the ejection fraction (EF) and 15% of the fractional shortening (FS) were observed in sham 

treated animals; respective decreases of 20% and 25% were measured 4 weeks after acellular 

patch implantation, whereas a steady function was observed 4 weeks after MSC-patch 

implantation (relative decreases of 6% for both EF and FS) [85]. 

An interesting application of electrospinning was presented by Jana et al. who fabricated an in 

vitro model of the fibrosa layer of a cardiac aortic valve using PCL [86]. Fibrosa layer is 

composed mostly of a dense network of type I collagen fibers oriented in circumferential 

direction. Thus, a morphologically biomimicking and standalone substrate with 

circumferentially oriented nanofibers was fabricated by electrospinning on an appropriately 

designed collector (figure 3.2). Cultured valvular interstitial cells (VICs) from porcine aortic 

valve showed a fibroblast phenotype that is generally observed in a healthy aortic leaflet, and 

their morphology was close to those in the fibrosa layer of a native aortic leaflet, rendering this 

approach promising for in vitro studies of valvular dysfunctions. 

 

3.2.2 Scaffolds based on PLLA, PLGA and their copolymers 

Another category of materials used for cardiac tissue purposes are the polymers poly-(L-

lactide) (PLLA), polyglycolide (PGA) and the copolymer poly(lactide-co-glycolide) (PLGA). 

In vitro studies of biodegradable non-woven PLGA-based scaffolds using primary CMs from 

rats have shown a dose–response effect of the PGA concentration on the degradation rate and 

the pH value changes [87]. It was found that CMs had a preference for relatively hydrophobic 

surfaces such as PLLA. PLLA scaffolds promoted better cell adhesion and mature cytoskeleton 

structure with well-defined periodic units in the contractile machinery (sarcomeres). 

Functional studies of CMs on the scaffolds, by optical imaging of electrical activity using 

voltage-sensitive dyes, substantiated the superior response on PLLA scaffolds compared to 

PLGA + PLLA and PLGA + PEG–PLA (poly(ethylene glycol)–poly(D,L-lactide) diblock copolymer). 

Co-electrospinning of PLGA with two natural proteins - gelatin and a-elastin - led to stable 

scaffolds in an aqueous environment without crosslinking, which were more elastic than those 

made of pure elastin fibers [88]. The PLGA–gelatin–elastin scaffold turned into stable fiber-

laden hydrogel in an aqueous medium, with suitable mechanical properties which were 

adjusted by the ratio of the components. Cytocompatibility tests with H9c2 rat cardiac 

myoblasts revealed that myoblasts grew equally as well or slightly better on the scaffolds than 

on tissue-culture plastic. Myoblasts reached confluence on the scaffold surfaces while 

simultaneously growing into the scaffolds. 

A 3D culture system based on electrospun PGA was fabricated for the study of cell lines of 

cardiac stem cells (CSCs) using a c-kit antibody from adult rat hearts which has previously being 

established by the same group [89]. C-kit -positive cardiac cells are well recognized as CSCs and 

have the potential to differentiate into CMs [90] although some studies have rather suggested 

a preferential differentiation towards the vascular cell lineage [91]. Composites of collagen-

PGA were prepared, that contained different amounts of electrospun PGA nanofibers, where 
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the latter were added as a sheet that formed a layer within the collagen sponge. The sponges 

were freeze-dried and then dehydrothermally crosslinked. The PGA nanofibers significantly 

enhanced the compressive strength of the collagen sponge. The attachment and proliferation 

of CSCs in the 3D culture was enhanced by incubation in a bioreactor perfusion system 

compared with 3D static and 2D (i.e. tissue culture plates) culture systems. 

In vitro studies of hiPSCs using aligned PLGA electrospun nanofibers coated on cell culture 

plates have shown that these cells better approximate normal cardiac tissue compared with 

those cultured on a flat surface, indicating the desire of an anisotropic environment [92]. In 

addition, electrospun PLGA-collagen (PLGA-Col) scaffolds have been studied as substrates for 

the differentiation of pluripotent embryonic stem cells (ESCs) isolated from the inner mass of 

blastocysts. During the culture of embryoid bodies’ outgrowth on the scaffolds, and further 

differentiation of ESCs to CMs, the PLGA-Col nanofibers were found superior than electrospun 

PLGA nanofibers, as a better interaction and growth of ESC differentiated CMs was observed 

on the composite scaffolds. PLGA scaffolds were found hydrophobic with a contact angle of 

128.11
0
, whereas PLGA/Col scaffolds showed hydrophilic properties with a contact angle of 

48.89
0
. The hydrophilic PLGA/Col nanofibers might serve as a favourable scaffold compared to 

PLGA for cardiac treatment [93]. 

Moreover, a scaffold consisting of a commercial copolymer of LLA with trimethylene carbonate 

(PLLA-co-TMC) was investigated in comparison to electrospun PLLA. The PLLA-co-TMC scaffold 

is a glassy rigid material at room temperature while it is a rubbery soft material at 37
0
C. 

Mechanical characterization results (tensile stress–strain and creep-recovery measurements) 

showed that at 370C electrospun PLLA-co-TMC displayed an elastic modulus of around 20 MPa 

and the ability to completely recover up to 10% of deformation. Cell culture experiments have 

shown that this copolymer scaffold promotes CMs proliferation and preserves cell 

morphology, without impeding expression of sarcomeric α-actinin marker [94]. 

Another combination of PCL and PGA of various compositions showed that with the increase of 

the concentration of PGA in spinning blend solution, the average diameter of nanofibers, 

hydrophilicity, and mechanical properties of the nanofibrous scaffolds increased. An in vitro 

degradation study of PCL:PGA nanofibers conducted in phosphate buffered saline confirmed 

that increasing the amount of PGA provides faster degradation rate in blended nanofibers. Cell 

attachment and spreading of cardiac progenitor cells (isolated from newborn rat heart) seeded 

on the scaffolds indicated that among electrospun nanofibrous scaffolds, the most appropriate 

candidate for myocardial tissue engineering scaffolds is PCL:PGA (65:35) [95].  

A composite of electrospun poly(1,8-octanediol-co-citrate) (POC) and PLLA-co-PCL (PLCL) was 

proposed by Prabhakaran et al., where its mechanical properties can be adjusted by tuning the 

amount of POC [96].The composite scaffold with POC/PLCL ratio of 40:60 [POC/PLCL4060] was 

found to have a tensile strength of 1.04 ± 0.11 MPa and Young’s modulus of 0.51 ± 0.10 MPa, 

comparable to the native cardiac tissue. The proliferation of cardiac rat myoblast cells (H9c2) 

on the electrospun POC/PLCL scaffolds increased from days 2 to 8, with the increasing 

concentration of POC in the composite. The morphology and cytoskeletal observation of the 

cells also demonstrated the biocompatibility of the POC containing scaffolds, indicating that 

electrospun POC/PLCL4060 nanofibers can be promising elastomeric substrates. 

An electrospun composite of PLA with poly(ethylene glycol) dimethacrylate (PEGdma) was 

developed aiming to mimic the structure and mechanical properties of native valve leaflets 

[97]. As PLA is highly hydrophobic, PEGdma, which can be photochemically crosslinked, was 

used to additionally stabilize the fibrous scaffold. Culture of VICs and valvular endothelial cells 

(VECs) on the scaffold under physiological conditions in a bioreactor resulted in a construct 

with performance like a native leaflet. Atomic force microscopy (AFM) revealed that spongiosa 

stiffness was much lower compared to the fibrosa and ventricularis. Taking into consideration 
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investigations into human fetal heart valve development that identified collagen type I and 

versican as key structural proteins, they were introduced to the scaffold in order to 

demonstrate the ability of this hybrid valve biofunctionalization. 

Recently, heterogenous nanofibrous scaffolds consisted of PLCL and the hydrophilic poly(ethyl 

oxazoline) (PEOz) at specific ratio have been demonstrated to mimic the native collagen fiber 

heterogeneity of the left ventricular cardiac tissue [98]. These scaffolds contain fibers with two 

different diameters of 100 - 150 nm and ∼500nm, obtained by electrospinning the 

aforementioned blend. H9c2 cells culture has shown improved cell compatibility along with 

the expression of cardiac marker proteins in the case of PLCL/PEOz at ratio 70:30. 

 

3.2.3 Polyurethane-based scaffolds 

Polyurethane (PU) based electrospun materials are another category often used for the 

construction of heart valves. For example, primary cardiac ventricular cells were grown on 

electrospun, biodegradable PU with either aligned or unaligned microfibers and supported 

high-density cultures and cell subpopulations, remained intact over two weeks in culture [99]. 

PU cultures contained electrically-coupled CMs with connexin-43 localized to points of cell-cell 

contact. Multi-cellular organization correlated with microfiber orientation and aligned 

materials yielded highly oriented CM groupings. Atrial natriuretic peptide (ANP), a molecular 

marker that shows decreasing expression during ventricular cell maturation, was significantly 

lower in cultures grown on PU scaffolds than in those grown on tissue culture polystyrene. 

Cells grown on aligned PU had significantly lower steady state levels of ANP and constitutively 

released less ANP over time indicating that scaffold-imposed cell organization resulted in a 

shift in cell phenotype to a more mature state, suggesting that the physical organization of 

microfibers in PU scaffolds impacts both multi-cellular architecture and cardiac cell phenotype 

in vitro. PU mesh scaffolds were utilized for the generation and seeding of ESC-derived CMs as 

well. The cells were elongated in shape, morphology typical of cultured ESC-derived CMs, 

sarcomeric myosin and connexin 43 expression was evident, and contracting cells were 

observed [100]. In addition, the same research group studied the effect of scaffold 

architecture and co-culture with mouse embryonic fibroblasts (MEFs) on the differentiated 

phenotype of murine ESC-derived CMs (mESCDCs) [101]. Both aligned and random fibrous PU 

scaffolds were fabricated by electrospinning, and it was found that the aligned scaffolds led to 

the anisotropic organization of rodshaped cells, improved sarcomere organization, and 

increased mESCDC aspect ratio when compared to cells on the random-fibrous scaffolds. 

Moreover, pre-seeding the scaffolds with MEFs improved mESCDC sarcomere formation 

compared to mESCDCs cultured alone. 

Biodegradable thermoplastic elastomers are attractive for application in cardiovascular tissue 

construct development due to their amenability to a wide range of physical property tuning. 

For example, electrospun poly (ester urethane) ureas (PEUU) were developed by Stankus et al. 

which demonstrated the integration of living cells into electrospun PEUU scaffolds [102]. 

Vascular SMCs isolated from rat aorta were electrosprayed simultaneously with the 

electrospinning of PEUU using a rotating mandrel collector, resulting in SMC microintegrated 

PEUU constructs with high cells density achieved in a short period of time and with high 

anisotropy. A comprehensive study of the same group of electrospun PEUU under variable 

conditions which modelled the effects of fiber orientation on the macro-mechanical properties 

of the scaffold, has shown that the high velocity electrospun scaffolds exhibited highly 

anisotropic mechanical properties closely resembling the native pulmonary heart valve leaflet 

[103].  Aiming to mimic the mechanical properties of a native pulmonary valve in both flexural 

and equi-biaxial tensile response, Amaroso et al. studied the effect of microstructural features, 

that are important on the flexural behaviour of electrospun scaffolds, by introducing 
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secondary electrospun fibers to the PEUU with simultaneous electrospinning [104]. It was 

noticed that mixed fiber constructs with higher modulus had higher bending and tensile 

moduli when secondary fibers were stiffer (PCL) than PEUU, whereas sacrificial fibers (PEO) 

within scaffolds were found to decrease overall construct modulus. Hobson et al. presented 

another approach of developing curvilinear fiber alignment in electrospun scaffolds by varying 

the geometry of the collecting mandrel in order to mimic the native semi-lunar heart valves 

[105]. PEUU was electrospun onto rotating conical mandrels of varying angles to produce 

fibrous scaffolds where the angle of fiber alignment varied linearly over scaffold length. By 

matching the radius of the conical mandrel to the radius of curvature for the native pulmonary 

valve, the electrospun constructs exhibited a curvilinear fiber structure similar to the native 

leaflet (figure 4).  

 

 

Figure 4. A. Picture of the conical mandrel during production of curvilinear electrospun sheets. B. 

Scheme of the flattened, conical electrospun sheet (top) and image of the excised leaflet with SEM 

images. Reprinted with permission from [105]. 

 

Moreover, using knitted conventional textiles made of cotton or polyester yarns as templates 

of electrospinning collectors, Senel Ayaz et al. created anisotropic 3D scaffolds from 

polycarbonate-urethane (PCU, Bionate®), which exhibited mechanical properties close to 

native in comparison to PLGA ones [106]. In vitro studies (initially with H9c2 cells) with 

neonatal rat CMs demonstrated the functionality in terms of physiologic contractility of the 

electrospun anisotropic polyester-templated Bionate scaffolds. 

A composite based on PU and ethyl cellulose (PU/EC) was fabricated featuring uniform fibrous 

nanostructures and 3D porous networks which proved to be biocompatible for retention and 

proliferation of cardiac myoblast H9c2 cells [107]. The high mechanical strength of the PU/EC 

scaffolds enables the processing and handling of an ultrathin patch. Their elastomeric 

characteristics revealed the compatibility between the patch and contractile tissues. 

Furthermore, anisotropic PU/EC scaffolds with aligned nanofibers were successfully fabricated, 

exhibiting higher mechanical strength and essential characteristics for the survival and 

function of cardiac cells with native anisotropy.  
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3.2.4 Poly(glycerol sebacate)-based scaffolds 

Poly(glycerol sebacate) (PGS) has emerged in the last decade, as a very attractive polymer for 

soft tissue engineering [108]. Indeed, PGS is a thermoset elastomer synthesized from nontoxic 

monomers, glycerol and sebacic acid, which can be degraded and completely resorbed in vivo. 

A PGS/gelatin core-shell electrospun composite reported for the co-culture of MSCs and CMs 

[109]. In this composite PGS used as a core polymer to impart the mechanical properties and 

gelatin as a shell material to achieve favorable cell adhesion and proliferation. The cardiogenic 

differentiation of MSCs was confirmed by employing MSC-specific marker protein CD 105 and 

cardiac-specific marker protein actinin. Ravichandran et al. supported that the co-culture of 

MSCs and CMs with a suitable elastomeric biomaterial combination such as PGS/gelatin has 

synergistic effects and are more effective than MSCs or CMs alone.  

Whereas, in another study, PGS and gelatin were blended before electrospinning resulting to 

the fabrication of scaffolds with well-defined anisotropy that can mimic the left ventricular 

myocardium architecture [110]. From the in vitro studies using neonatal rat cardiac fibroblast 

cells (CFs) and CMs, it was found that aligned fibrous scaffold, consisting of 33 wt. % PGS, 

induced optimal synchronous contractions of CMs while significantly enhanced cellular 

alignment.  

Kenar et al. used a polyester blend consisted of PGS, poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHBV) and P(L-D,L)LA and for the fabrication of aligned electrospun mats 

[111]. The basic 3D construct design involved two biodegradable macroporous tubes, to allow 

transport of growth media to the cells within the construct, and cell-seeded, aligned fiber mats 

wrapped around them. The electrospun parallel fibers proved to be effective for the alignment 

of MSCs from human umbilical cord matrix (Wharton’s Jelly) after their culture on them, where 

the cells were able to retract the mat. The 3D construct was cultured in a microbioreactor by 

perfusing the growth media transiently through the macroporous tubing for two weeks and 

enhanced cell viability, uniform cell distribution and alignment due to nutrient provision from 

inside the 3D structure were confirmed. 

Non-linearly elastic biomaterials were successfully fabricated from a chemically cross-linked 

elastomeric PGS and PLLA using the core/shell electrospinning technique [112]. The 

electrospun materials, containing a PGS core and PLLA shell, demonstrated J-shaped stress–

strain curves and displayed ultimate tensile strength, rupture elongation, and stiffness 

constants comparable to muscle tissue properties. In vitro evaluations also showed that 

PGS/PLLA fibrous biomaterials possess excellent biocompatibility, capable of supporting 

human ESC-derived CMs over several weeks in culture. 

An electrospun fibrous blend of PGS and poly(butylene succinate-butylene dilinoleate) (PBS-

DLA) of different compositions was examined for its suitability for heart patches [113]. The 

addition of PBS-DLA to PGS resulted in an increase of the average fiber diameter, whereas 

increasing the amount of PBS-DLA the elastic modulus was increased as well as the 

hydrophobicity of the blended scaffolds. Initial toxicity studies with C2C12 myoblast cells up to 

72h confirmed the nontoxic behaviour of the blends.  CMs culture results contradicted those 

of the C2C12 cells, where the PBS-DLA 70/30 scaffolds showed the lowest cell viability. Authors 

claimed that CMs seem to be more sensitive to the matrix stiffness, showing better 

attachment and maturation on the softer matrix. Comparing to the controls used in the study 

(gelatin- and fibronectin-coated glass coverslips), CMs attach and spread much faster on 

PGS/PBS-DLA fiber blends than on gelatin and the same as fibronectin. 
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3.2.5 Scaffolds based on other polymeric materials 

Recently Castellano et al. presented an extensive study on the ability for cardiac repair of 

various electrospun scaffolds including poly(3-hydroxybutyrate) (PHB), PCL, silk, PLLA, 

polyamide (PA) which were compared to a non-crosslinked collagen membrane that was used 

as control [114]. In vitro studies using mouse cardiac HL-1 cell line, cardiac fibroblasts and 

MSCs from dental pulp showed that PHB and PCL polymers allowed the greatest 

adhesion/growth of cells. In vivo studies with acellular patches on the epicardial surface of 

healthy rats have shown that only collagen and PHB patches were progressively degraded. 

Implantation on infarcted rat heart indicated that only PHB induced significant angiogenesis. 

Nevertheless, in vivo studies with cell-seeded patches are required in order to prove the 

superior properties of PHB electrospun scaffolds. 

Scaffolds made of lipase-catalyzed poly(ω-pentadecalactone) (PPDL) have been reported by 

Focarete et al. [115]. The main advantage of PPDL is its slow resorbability which is essential in 

tissue-engineering applications that require long healing times. The biocompatibility of PPDL 

scaffolds was evaluated using embryonic rat cardiac H9c2 cells. It was demonstrated that H9c2 

cells retain their native, mesenchymal spindle shaped, sheet-like morphology and cover the 

scaffold surface with a confluent cell monolayer, which is promising for the usage of PPDL 

scaffolds for cardiac tissue engineering. 

Polydioxanone (PDO) electrospun bioabsorbable valved patches were studied for restoring the 

right ventricular outflow tract (RVOT) [116]. The scaffold seeded with MSCs was implanted in 

the right ventricular outflow tract (RVOT) of growing lambs and the function, histological 

changes and potential of growth, and tissue regeneration of PDO were investigated. 

Autologous blood-derived MSCs were labeled with quantum dots and seeded on PDO 

electrospun valved patches. Those were implanted into the RVOT of 6 growing lambs followed 

up until 8 months. Tissue-engineered RVOT were neither stenotic nor aneurismal and 

displayed a growth potential, with less fibrosis, less calcifications and no thrombus compared 

with control polytetrafluoroethylene (PTFE)-pericardial patches. The PDO scaffold was 

completely degraded and replaced by a viable, three-layered, endothelialized tissue and an 

extracellular matrix with elastic fibers similar to that of native tissue. Detection of quantum 

dots at 1 month suggested that at least some of the cells were-derived from the grafted cells. 

The PDO electrospun tissue-engineered valved transannular patch appears to be a promising 

device in restoring a living RVOT and could ultimately lead to applications in the treatment of 

congenital RVOT diseases. The same group further compared electrospun scaffolds of PU, 

poly(3-hydroxybutyrate-co-3- hydroxyvalerate-co-4-hydroxyvalerate (PHBVV) and PDO, using 

two biofunctionalization techniques: adipose-derived stem cells or arginine-glycine-aspartate 

(RGD) peptide in a rat model of partial inferior vena cava replacement [117]. In vitro studies 

using adipose-derived stem cells and in vivo results revealed the superior properties of PDO, 

while the two functionalization methods yielded similar outcomes. 

Moreover, electrospun scaffolds obtained by mixing poly[1,8-octanediol-co-(citric acid)-co-

(sebacic acid)] (POCS) and fibrinogen in various ratios have been utilized for cardiac tissue 

engineering [118]. These composites have shown flexibility and biodegradability. Culture with 

human CMs revealed that the scaffold POCS/fibrinogen with ratio 1:1 is the optimum with 

excellent cell growth and no toxicity and has a potential for cardiac tissue regeneration. 

Another interesting approach is the so-called “cell electrospinning” introduced ten years ago 

by Jayasinghe and co-workers, which demonstrated the ability to directly electrospin living 

cells for the development of living scaffolds [119]. This technique is based on the use of a 

coaxial needle arrangement where a concentrated living biosuspension flows through the 

inner needle and a polymeric medium (poly(dimethyl siloxane)) with high viscosity and low 

electrical conductivity flows through the outer needle. Their research revealed that the high 
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applied voltage did not directly have an adverse effect on the cells as the current in these 

experiments was kept in very low values (nanoamperes). Recently, this group demonstrated 

the ability to directly handle primary neonatal CMs as concentrated cellular suspensions for 

the formation of living cardiac fibers and scaffolds using cell electrospinning [120]. The in vitro 

studies indicated that the cell electrospinning does not alter CMs viability where the function 

of the latter is maintained. 

Table II summarizes the scaffolds characteristics, in terms of synthetic polymers based 

materials, fibers morphology, in vitro/in vivo studies. 

 

Table II. Electrospun scaffolds based on synthetic polymeric materials in cardiac tissue 

engineering. 

Material 
Fibers 

morphology 
Cultured cells In vitro In vivo 

Publication 

year 
Ref. 

PCL random CMs �   2004 [74] 

PCL random CMs �  
 

2005 [75] 

PCL + collagen I & 

III 
random 

coronary artery smooth 

muscle cells (CASMCs)  
�  

 
2005 

[78] 

PLLA, PLGA + 

PLLA, PLGA + 

PEG–PLA 

random rat primary CMs �   2005 

[87] 

PLGA–gelatin–

elastin  
random H9c2  �   2006 

[88] 

PEUU-cosprayed 

SMCs 
random 

vascular SMCs isolated 

from rat aorta 
�   2006 

[102] 

PEUU random  

pulmonary 

heart valve 

leaflet 

 2006 

[103] 

PCL/gelatin 

PCL/collagen 

PCL/elastin  

random 
adipose-derived stem 

cells  
�  

 
2008 

[79] 

PU  
random & 

aligned 

rat primary ventricular 

CMs  
�   2008 

[99] 

PU random ESC-derived CMs  �   2008 [100] 

collagen-PGA  random CSCs  �   2010 [89] 

PPDL random H9c2  �   2010 [115] 

PDO 

rectangular 

mandrel, 

random 

autologous blood-

derived MSCs  
�  

� RVOT 

of growing 

lambs 

2010 [116] 

PCL/gelatin  
random & 

aligned  
rabbit CMs �  

 
2011 

[80] 

PLLA-co-TMC random CMs �   2011 [94] 

PGS/gelatin  
core-shell, 

random 

coculture MSCs and 

CMs 
�   2011 

[109] 

Blend(PHBV), P(L-

D,L)LA, PGS 
aligned Wharton’s Jelly MSCs  �   2011 

[111] 

POC/PLCL  random H9c2 �   2012 [96] 

PU 
random & 

aligned 

mouse embryonic 

fibroblasts on the 

differentiated 

�   2012 

[101] 
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phenotype of murine 

ESC-derived CMs 

PEUU with PCL, 

PEO 
random  

pulmonary 

heart valve 

leaflet 

 2012 

[104] 

PGS/gelatin aligned 
neonatal rat cardiac 

fibroblast cells & CMs 
�   2013 

[110] 

PGS-PLLA  
core-shell, 

random 
human ESC-derived CMs �   2013 

[112] 

3D spring like PCL random rat CMs �   2013 [84] 

PLGA-collagen random 
pluripotent ESCs 

differentiation to CMs 
�   2014 

[93] 

PCL-PGA random 

cardiac progenitor cells 

(isolated from newborn 

rat heart)  

�   2014 

[95] 

PLA-PEGdma random 
VICs and valvular 

endothelial cells (VECs)  
�   2014 

[97] 

PCL-treated with 

plasma 
random 

bone-marrow-derived 

MSCs  
�  

� rodent 

model of 

chronic MI 

2014 

[85] 

PCL/BPAEDMA  random rabbit CMs  �  
 

2014 [81] 

Plasma treated 

PHB, PCL, silk, 

PLLA, PA 

random 

mouse cardiac HL-1 cell 

line, cardiac fibroblasts 

and MSCs from dental 

pulp 

�  

� Acellul

ar patches -

rat model of 

MI 

2014 

[114] 

PCU, 

Bionate®/PLGA 
random 

H9c2 on PLGA & 

Bionate,  and neonatal 

rat CMs on Bionate 

�   2014 

[106] 

cell 

electrospinning 

core-shell, 

random 
primary neonatal CMs �   2014 [120] 

PCL coated with 

gelatin 
random murine iPSCs �  

 
2015 

[83] 

PCL  random 

valvular interstitial cells 

(VICs) from porcine 

aortic valve  - fibrosa 

layer 

�  
 

2015 

[86] 

PLGA aligned hiPSCs �  
 

2015 [92] 

PLCL/PEOz random H9c2 �  
 

2015 [98] 

PEUU random  

pulmonary  

heart valve 

leaflet 

 2015 
[105] 

PU/EC 
random & 

aligned 
H9c2 �  

 
2015 

[107] 

PGS, PBS-DLA random C2C12 myoblast cells  �  
 

2015 [113] 

PDO, PU, PHBVV random 
adipose-derived stem 

cells 
�  

� rat of 

partial inferior 

vena cava 

replacement 

2015 [117] 

POCS/fibrinogen random human CMs  �  
 

2015 [118] 

 



  

21 

 

From the aforementioned, it becomes apparent that there is flexibility in the use of a variety of 

polymeric materials, both natural and synthetic, in any combination which can be electrospun 

and can lead to functional scaffolds for cardiac tissue engineering. Using blended polymers in 

the initial solution prior to electrospinning or utilizing coaxial electrospinning for the formation 

of core/shell nanofibers is an attractive option for balancing the weaknesses of one polymer 

with the strengths of another. There is a huge amount of work focusing on the struggle of 

adjusting the mechanical properties of the scaffolds. It is unsafe at the moment to conclude 

which of the reported scaffolds meets better the criteria of an ideal cardiac scaffold as 

different results obtained by using different type of cardiac cells. Nevertheless, it becomes 

evident that elastomeric materials are preferential in a mechanically dynamic environment, 

such as the cardiovascular tissue. The results obtained by using synthetic scaffolds were 

superior. Last in terms of the structure, when random and aligned fibers were compared for 

the myocardium tissue engineering, the latter had a clear precedence. This is an open field, 

and the research is expected to grow during the coming years in the field of heart cell therapy. 

Nevertheless, in furtherance of achieving a functional scaffold, more consistent studies should 

be carried using the same type of cardiac cells, preferentially human derived stem cells, in 

synergy with cell-seeding conditions using appropriate bioreactors. 

 

4.  Methods for Improving Scaffolds Functionalities 

It is self-evident that the material properties of the electrospun nanofibers play a huge role in 

the interactions between the scaffolds and cardiac cells. In terms of viability, the most 

important properties are those of the surface and not the bulk of the material. As in many 

other applications, a specific material might be suitable for the creation of the scaffold, but its 

surface properties may not be suitable for cardiac cell growth. Instead of using other materials, 

it is quite common to modify the polymer of interest and to induce the desired properties on 

the surface or the bulk. Using several techniques, the microenvironment of the scaffold at the 

interface between the cells and the polymer, where they adhere and interact with the scaffold 

itself, can be improved. In some other cases, a particular modification might be employed to 

improve a desired functionality of the electrospun nanofiber surfaces, which corresponds to 

the desired change of the interaction of the material with the cardiac cells. The classification of 

the modification methods presented herein includes co-electrospinning by combining 

biological elements and  conductive materials, and surface post treatment with wet (chemical) 

and dry (plasma) techniques (figure 5). In many cases, a combination of these methods has 

been reported for the achievement of the optimum scaffold. 
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Figure 5. Classification of the functionalization methods of electrospun scaffolds in cardiac tissue 

engineering. 

 

4.1 Co-electrospinning with additives (pre-treatment) 

4.1.1 Co-electrospinning with biological materials 

One very common method used is the incorporation of biological materials in the initial 

polymeric material, and subsequent electrospinning of the mixture (co-electrospinning). This 

way, a polymer that lacks a specific biological functionality can be improved. Usually, this 

pertains to the survival and the normal behavior of cardiac cells that are cultured in the 

scaffolds. These biomaterials seem to efficiently improve adhesion, viability, and 

biocompatibility of the scaffolds while other properties like differentiation towards a specific 

type of cells appears to be affected in specific cases.  

Yu et al. incorporated short peptides previously covalently conjugated to poly-L-lysine. Two 

adhesive peptides N-acetyl-GRGDSPGYG (RGD) and N-acetyl-GYIGSRGYG (YIGSR) – both 

deriving from laminin – were mixed with PLGA to electrospin, and compared to laminin –

coated PLGA scaffolds [121]. In vitro studies using rat CMs indicated that the cells cultured on 

the YIGSR incorporated and the laminin-coated aligned scaffolds showed physiological-like 

morphology, while the overall superior behavior corresponded to the YIGSR-PLGA. 

Spadaccio et al. proposed the functionalization of PLLA electrospun fibers with granulocyte 

colony-stimulating factor (G-CSF) [122]. G-CSF has shown to have a direct effect on CMs, by 

restraining apoptotic behavior and remodeling in a failing heart as well as by protecting from 

ventricular arrhythmias. This is achieved by the up-regulation of connexin 43 (Cx43). By adding 

G-CSF, the orientation of stem cell differentiation can be controlled, and important local and 

systemic effects can be wielded to adjust the myocardial microenvironment. Also by using G-

CSF, the mechanical properties of the scaffold produced by electrospinning mimics more the 

properties of the natural connective tissue. 

Bhaarathy et al. have incorporated 2 different components in the initial polymer to improve 

different functionalities [123]. Their study uses PLCL, silk fibroin (SF) and Aloe Vera (AV) to 
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create a scaffold via electrospinning so as to use it as an implantable material. The study 

showed that the myocardial microenvironment was influenced positively in terms of cellular 

adhesion, morphology, proliferation and protein expression for neonatal rat CMs. The 

nanofibers of PLCL/SF/AV showed elasticity and mechanical properties similar to those of the 

myocardium, also giving a positive environment in terms of contractility. The presence of Aloe 

Vera also adds up to the functionality of the scaffold and its potential use as a cardiac patch, 

since it induces anti-allergic and anti-inflammatory effects to the electrospun scaffold.  

Simón-Yarza et al. used a polymer blend containing PLGA and six-armed star-shaped 

poly(ethylene oxide-stat-propylene oxide) with isocyanate end groups (NCO-sP(EO-stat-PO) 

with 80% EO content, to encapsulate the cardioactive growth factor Neuregulin-1 (Nrg) [124]. 

The evaluation of the electrospun scaffold with the encapsulated biomaterial was performed 

in a rat model of myocardial ischemia, regarding biocompatibility, adherence, and degradation. 

The study outcomes showed a promising therapeutic strategy for the repair of myocardial 

tissue, since the constructed synthetic scaffold yielded results consistent with constructive 

tissue remodeling. 

 

 

Figure 6. Schematic representation of emulsion electrospinning for producing core–shell nanofibers. 

Reprinted with permission from [125]. 

 

In addition to the above, one of the most sophisticated electrospun scaffolds was proposed by 

Tian et al. which developed PLCL electrospun scaffolds by emulsion electrospinning, a 

technique for the formation of core–shell nanofibers (figure 6) [125]. Aiming to develop a 

sustained release scaffold which could be a promising substrate for cardiovascular tissue 

regeneration, Tian et al. encapsulated VEGF, which is an indispensable bioactive growth factor 

for cardiovascular regeneration, with either dextran or bovine serum albumin (BSA) into the 

core of PLCL nanofibers by emulsion electrospinning. Dextran and BSA acted as the protective 

agents in order to maintain the bio-activity of the encapsulated VEGF in the electrospun PLCL. 

In vitro release study of VEGF using phosphate buffered saline revealed that the PLCL–VEGF–

dextran nanofibers are capable of delivering the growth factor in a more sustained manner. 

The same group used core/shell nanofibrous scaffolds of PGS and fibrinogen where they 

injected VEGF and MSCs in an in vivo porcine model with infarcted myocardium [126]. The in 

vivo studies demonstrated that most of the transplanted MSCs within the scaffolds expressed 
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the cardiac marker proteins and prevented negative ventricular remodeling of the myocardium 

by offering structural support to the left ventricle wall. 

Similarly, introduction of VEGF in electrospun mats using the water-oil emulsion method was 

utilized for synergistically inducing angiogenesis and cardiomyogenesis in an acute myocardial 

infarction model of rats [127]. Epicardial co-implantation of VEGF and CSCs using a PLLA 

electrospun mat enabled the sustained release of VEGF, leading to improved cell retention, 

neovascularization, engraftment rate and enhanced global cardiac function.  

Overall this method gives the advantage of incorporating biological materials in the bulk of the 

nanofiber and thus introducing all the desired biological functionalities. This way the new 

composite material will have better biocompatibility. The absence of the necessary adhesive 

sequences that are essential for cell adhesion and cell viability [128] can be drastically 

improved. Combining the properties of the initial polymer and its suitability for 

electrospinning, a new advanced material is aimed to be created. On the other hand, this 

approach shows similar disadvantages as the use of biological materials does. The initial 

mechanical properties are becoming inadequate with the increase of the addition of the 

biological component [129]. Additionally, there is always the risk of rapid degradation in the 

electrospinning process of the biological materials in a way that the fibers loose the function 

and activity of the incorporated biological materials [130]. Also, the material itself should be 

homogenized to avoid variability of biological properties in the nanofibers. All this tuning 

needed for this approach to be effective also increases the cost.  

This method although seemingly simplistic becomes complex due to the complexity of the 

biological materials by nature, and to their non-compatibility with the method of 

electrospinning. Potentially a biomaterial synthesized with the use of biological elements in a 

way that it can show increased mechanical properties could be a better alternative than this 

approach. 
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4.1.2 Co-electrospinning with conductive materials The ventricle in the human body 

shows a remarkable contractility. The mechanism underlying this ability of 

contraction is driven by the synchronous contraction of CMs. In order for the 

CMs to contract successfully, an electrical signal drives the contraction and is 

supported by the mechanical properties of the human myocardium. Thus, we 

can claim that one of the most important issues for cardiac tissue engineering 

is the improvement in scaffold conductivity (appropriate conduction velocity). 

Controlling conductivity in electrospun scaffolds will help to promote the 

functionalization and maturation of regenerated tissues. The materials that 

are traditionally used for the utilization of the electrospun scaffolds do not 

combine appropriate mechanical and electrical properties. This is the reason 

behind the inability of engineered tissues to keep up with the pace of 

contraction of the native myocardium. As a result, when a scaffold is 

implanted in the heart, it is common that arrhythmias are observed [131]. 

Scaffolds with the desired conductivity could sense the native electrical signals 

successfully and prevent arrhythmias. This way, they could promote CMs 

rhythmic contraction and subsequently direct the differentiation of cardiac 

tissues in vitro, since rhythmic contraction can promote cell alignment and 

electrical coupling of cultured cardiac cells [44]. 

Another strategy used in order to enhance the functionalities of the electrospun scaffold is the 

addition and dispersion of functional agents in the initial solvent of the polymer to create a 

composite so that after electrospinning, the added functionalities will affect the behavior of 

cells. These could be nanoparticles or functional polymers which are added to the initial 

solution and co-electrospun with the initial polymer, similar as in the previous case of adding 

biomaterials. Therefore, to improve conduction velocity of the scaffold to an appropriate value 

as mentioned before, conductive and biocompatible additives can be used for co-

electrospinning.  

Carbon nanotubes in general, have been used as additives in several cases to improve the 

conductivity of polymers, since they show excellent conductive properties and descent 

biocompatibility [132,133]. Based on these studies Crowder et al. proposed the addition of 

multiwall carbon nanotubes (MWCNTs) in PCL [134]. This way the conductivity was up to 35 

mS/cm, depending on the composition. Human MSCs that were cultured on the scaffolds 

created with this composite material containing MWCNTs showed an elongated morphology 

which is similar to that of CMs while there was a strong colocalization between mouse 

antihuman myosin heavy chain (α-MYH) and F-actin cytoskeleton, thereby suggesting  early 

cardiac differentiation. Kharazila et al. also incorporated CNTs in PGS/gelatin electrospun 

nanofibers improving the electrical conductivity along with the mechanical properties of the 

fibers without affecting negatively any biological properties. The resulting scaffolds showed 

enhanced beating properties for the cultured cardiac tissue [135].  

Gold has been used extensively for cell studies due to its biocompatibility and high stability. 

The incorporation of gold nanoparticles (AuNPs) is another conductive substance that is used 

to improve conductivity and mechanical properties. Fleischer et al. added AuNPs to PCL and 

reported that this addition of AuNPs affected the morphology of the cardiac tissues [136]. The 

morphology of the cells was elongated and aligned, which mimics the morphology inside the 

myocardium. Another work proposes the electrospinning of incorporated AuNPs to 

Bis(trimethylsilyl)acetamide (BSA)/Poly(vinyl alcohol) (PVA) mixture [137]. The scaffold created 

was used for culturing MSCs and the differentiation was reported. The cells showed the 
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characteristic morphology of cardiac cells, as well as cardiac protein expression for actinin, 

Troponin-T and Cx43, leading to conclude that AuNP loaded-caffolds provoked the functional 

differentiation of MSCs. The same group used a PCL/Silk Fibroin/Vitamin B12/Aloe Vera/AuNP 

mixture to create scaffolds and direct the differentiation of MSCs into cardiac lineage [138]. 

The MSCs were co-cultured with cardiac cells on the fabricated scaffolds. AuNPs and Vitamin 

B12 provided the functionalities in terms of chemistry and physical properties towards the 

enhancement of the MSCs proliferation and differentiation into cardiogenesis, a fact that was 

measured by the phenotype and the cardiac marker expression in the differentiated MSCs.  

Jung et al. also combined the incorporation of AuNPs as well as peptides with 

polymethylglutarimide (PMGI) to create electrospun scaffolds, which potentiated cardio- 

myocyte differentiation of human ESCs and iPSCs [139].  

 

 

Figure 7. Schematic representation of aligned conductive PANI/PLGA nanofibers fabrication, cell 

seeding, electrical stimulation and the mechanisms of the synchronous cell beatings. Reprinted with 

permission from [140]. 

 

One also common method to improve conductivity is the incorporation of conductive 

biocompatible polymers in the same way as described previously (co-electrospinning). 

Polyaniline (PANi) and polypyrrole (PPy) are the two most used conductive polymers for co-

electrospinning [140–143] [144]. By using this approach, an electrically active scaffold can be 

created, which will coordinate the synchronous beating of cultured CMs in the scaffold. These 

materials (PANi and PPy) are compatible and amenable to the electrospinning technology, 

while their conductivity can be manipulated by the change of the percentage of the conductive 

polymer in the initial mixture. For example Hsiao et al. fabricated nanofibers by co-

electrospinning of PANI with PLGA (figure 7) [140]. The main difficulty here lays in the fact that 

their chemical composition can be affected by this process, which may change their biological 

and mechanical properties.  

In total, this method incorporates materials that can induce specific functionalities to the bulk 

of the material and focuses mostly on the properties side of the material used for 

electrospinning. The mechanical properties can very easily be tuned into the desired ones, as 

well as advanced functionalities like conductivity can be achieved. This approach has the 

advantage of excellent compatibility and suitability of the process itself. The science used to 
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promote the desired functionalities is well established and in most of the cases the materials 

used are of lower cost than the equivalent biological ones described in 4.1.1. For all the above 

the chemical and mechanical properties of the produced nanofibers can be highly reproducible 

[145]. 

On the other hand in most of the cases, a further step is needed since biocompatibility of the 

produced nanofibers is low. Also the fact that most of the polymers are hydrophobic creates 

an additional difficulty in culturing cells on the fibers, especially for the more hydrophobic 

ones. Additionally, toxicity [146][147][148] and biodegradation is a big concern and is 

problematic when nanoparticles are used [130]. Although this method can provide advanced 

functionalities on the electrospun nanofibers that are produced, it lacks essential 

functionalities that have to do with mimicking the ECM. Further additional steps are needed to 

improve cell adhesion on the surface. As stated in 4.1.1, unless there is a biocompatible, non-

toxic and non-degrading material with these specific functionalities, it will be highly unlikely 

that this approach by itself can produce the desired electrospun nanofibers to create a scaffold 

for in vivo application. 

 

4.2 Surface modification of electrospun nanofibers (post-treatment) 

4.2.1 Post treatment by chemical modification 

One of the most important factors on the fabrication of functional materials for biological 

applications is the modification of the surface chemistry. This can be achieved either by 

introducing functional groups on the surface of the material or by modifying the existing 

functional groups [149]. 

Hsiao et al. used hydrochloric acid (HCl) to induce positive charges on the surface of co-

electrospun polyaniline (PANI) and PLGA fibers (fig. 7) [140]. This way they achieved to dope 

the surface of the fibers with positive charges and thus attract the negatively charged adhesive 

proteins fibronectin and laminin improving CM attachment on the scaffolds.  

Shevach et al. [150] proposed the deposition of 2-14 nm AuNPs on the surface of co-

electrospun PCL–gelatin fibers (figure 8). The AuNP coated scaffolds promoted the alignment 

and the elongation of cardiac tissue compared to the non-coated ones. Also, the ratio of CMs 

to fibroblasts was maintained in the culture, promoting an impressive cardiac sarcomeric 

actinin expression. The contractility of the AuNP coated scaffolds was also enhanced compared 

to the non-coated one, exhibiting higher contraction rate and amplitude.  

 

 

Figure 8. Schematic representation of the evaporation of gold NPs onto electrospun PCL–gelatin fiber 

scaffolds and the subsequent cell seeding. Reprinted with permission from [150]. 
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Another approach used for improving specific functionalities of the electrospun scaffolds is 

polymerization on the surface of the fibers. Jin et al. polymerized pyrrole on the surface of 

PLLA scaffold, creating discrete hollow polypyrrole (PPy) fibers with deep (100 μm) 

interconnected pores [151]. This structure allowed the entry of CMs and showed excellent 

results for proliferation and morphology of the cultured cells.  In another study, dopamine was 

also polymerized on the surface of PLCL [152]. Polydopamine allowed gelatin immobilization 

on the surface, without affecting the mechanical properties of the electrospun nanofibers. 

Additionally polydopamine and gelatin synergistically affected CM adhesion and proliferation. 

A post-treatment with a biologically active substance is also a very common method for the 

improvement of the biological properties of the electrospun fibers. The scaffolds are incubated 

in solutions containing the biological substance, which coats the surface of the fibers. 

Fibronectin is the most widely used biological substance for cardiac cells and has been coated 

on chitosan [68], PCL [153] [84], PLA [154] and PU [99]. Collagen type-I was also used on P(L-

D,L)LA [111] and laminin on PLGA [121]. In all cases, the cells show improved attachment, 

proliferation, and viability, while in some cases the desired shape of CMs is achieved. 

NaOH is commonly used to chemically modify the surface of electrospun scaffolds in tissue 

engineering. It has been used both in PLLA and PCL scaffolds to make their surfaces 

superhydrophilic by introducing –OH on the polymer surface. The cultured cells showed 

favourable morphology and adhesion [155,156]. The only study reported so far to use NaOH 

for cardiac tissue engineering, uses it to etch biofunctionalized PLGA, without apparently 

taking advantage of the change in chemistry of the polymer surface [121].  

Summarizing, this method induces chemical and/or biological changes on the surface of the 

electrospun nanofibers to modify and improve the surface properties of the initial material 

used for electrospinning. The main advantage of this approach lies in the fact that the bulk of 

the nanofiber is not affected and thus does not change properties. This way, a material with 

desired mechanical properties can be used for the process of electrospinning (it can also be a 

co-electrospun advanced material like the aforementioned in section 4.1), which subsequently 

is modified (bio)chemically to improve the biocompatibility, cell adhesion and cell viability in a 

uniform and homogeneous fashion. The main disadvantage would be that some of the 

processes may degrade rapidly, while in other cases the chemical modification can decompose 

the material if it affects it at a bigger depth [129]. In addition, although the chemistry of the 

surface can be modulated to mimic the ECM of the myocardium, there is also the 

nanomorphology of the nanofibers that in most of the cases is not following the same 

approach. Chemistry is controlled, but structuring of the surface is either not changed or not 

done in a controlled fashion [157] to induce desired structural changes on the surface of the 

electrospun nanofibers. Although this method is simple, direct, and cost effective, if coupled 

with a more sophisticated method it can significantly increase production cost [158]. 

All in all this approach, if combined with the methods described in section 4.1, can be a very 

promising technique towards which more research should be directed. Research should be 

focusing on understanding the mechanisms responsible for the attachment cells on the 

modified surfaces, i.e. covalent bonding or sorption (e.g. physisorption, chemisorption, 

adsorption), so that the nature of the changes that these biochemical processes induce is fully 

controlled and explained. There is a lot of research on the chemical modification and its 

potential shows that more focus will be put on this technique in the near future.   

 



  

29 

 

4.2.2 Post treatment by plasma  modification 

Plasma treatment is one of the most extensive methodologies that are used to improve 

specific properties and functionalities of materials. Biological properties can be controlled and 

modified via the intrinsic ability of plasma to modify surface properties of polymers, like 

surface chemistry, ζ-potential, wettability, electrical conductivity and morphology [159–161] 

[162]. 

Guex et al. [85] used a radio-frequency plasma source to modify the surface of PCL fibers. An 

oxygen functional hydrocarbon coating was deposited on the PCL fibers using a mixture of 

ethene (C2H4), carbon dioxide (CO2) and argon (Ar) for 15 min. XPS analysis confirmed the 

formation of an oxygen functional hydrocarbon layer, on the surface of the PCL fibers by 

plasma polymerization. These plasma coated PCL fibers were tested in vivo in a rat model and 

had shown good mechanical integrity (figure 9).  

 

 

Figure 9. Photographs of an implanted MSC patch in a rat heart. (A) Patch placement on the beating 

heart. (B) Patch 4 weeks after implantation where neo-vessels are apparent on its surface. (C) 

Transversal cut of an excised heart, which reveals the strong adherence to left ventricle wall (patch 

contours are represented in dashed lines). Scale bar: 5 mm. Reprinted with permission from [85]. 

 

Bhaarathy et al. use air plasma treatment to improve the wettability of the surface of PLCL, SF 

and AV blend biocomposite nanofibrous scaffolds [123]. Plasma treated samples become more 

hydrophilic, allowing the attachment of cardiac cells as well as the desired proliferation and 

shape. Likewise Castellano et al. utilized N2 plasma for the introduction of polar groups onto 

the surface of PHB, PCL, PLLA, silk, PA electrospun scaffolds prior to cell culture [114]. 

Plasma surface modification as a method for improving the surface properties is quite unique 

as it can induce many different changes on the surface simultaneously or selectively one by 

one. Another advantage is the fact that it can change selectively areas of interest and not the 

whole area of the scaffold comparing to all the other methods, giving this method the option 

to create multifunctional scaffolds using one tool. Plasma in principle creates chemical 

modification by introducing energetic ions on the surface and subsequently changes 

conductivity and surface energy [161]. As in section 4.2.1 it can be used as a different kind of 

chemical modification method for biomolecule immobilization and this way improving cell 

adhesion, proliferation, and viability [163]. It can be used as a deposition tool for a variety of 

coatings, or it can increase the surface of the nanofibers by graphitization [161]. Due to its 

nature, plasma also creates nanostructuring on surfaces either due to etching or due to 

deposition [159][160][162][164][165], so it can also be a tool for the reconstruction of the 

desired micro/nanoenvironment that mimics the cardiac ECM. Finally, an additional advantage 

is the UV irradiation that plasma creates by default and is a benefit on the decontamination of 

surfaces. The disadvantages of this method are mostly due to the fact of the anisotropic nature 

of plasma. Because of this, the parts that are “shaded” on the vertical movement of the ions 

fail to functionalize. Also, the use of vacuum systems increases the complexity and the cost of 

the process comparing to a simple chemical modification and the use of a single chemical.  
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Concluding, plasma surface modification can achieve multiple functionalities using a single 

method, which is a unique advantage comparing to all the aforementioned methods. Although 

this method is not widely used for electrospun nanofibers due to its disadvantages, the recent 

advances in atmospheric pressure plasma systems, combined with the very recent science of 

microplasmas (plasma sources the size of microns), can provide a new tool for achieving the 

desired morphology and functionalities of the electrospun nanofiber scaffold. There is very 

little research done so far in this area, but this method shows great potential. The science of 

plasma surface modification for tissue engineering has been thoroughly investigated in the last 

10 years for polymeric films, and this in combination with recent technologies of plasmas, it 

can provide the desired solutions towards the functionalization of electrospun scaffolds for 

cardiac tissue engineering. 

 

Table III summarizes the scaffolds details in the modification methods described above. The 

references that are included in the tables I and II, but described in the current section as well 

regarding their modification are not included in the table III once more. 

 

Table III. Modification of electrospun scaffolds in cardiac tissue engineering. 

Material 
Fibers 

morphology 
Modification Cultured cells In vitro In vivo 

Publication 

year 
Ref. 

PANi blend random gelatin H9c2 �   2006 [143] 

PLA random fibronectin neonatal rat CMs �   2010 [154] 

poly-L-lysine dendrimers 

(HPLys) + PANi 
random  neonatal rat CMs �   2010 

[144] 

PCL random PANi human MSCs �   2011 [141] 

PCL + Polypyrrole (PPy) random gelatin rabit CMs �   2011 [142] 

PLCL random 
polydopamine + 

gelatin 
neonatal rat CMs �   2011 

[152] 

PLLA random G-CSF CMs �   2011 [122] 

PLCL random 
VEGF + BSA or 

dextran emulsion 

human bone 

derived MSCs 
�   2012 

[125] 

PMGI random peptides + AuNPs 
human ESCs & 

iPSCs 
�   2012 

[139] 

fluffy PPy scaffold random 
polymerized 

from fluffy PLLA 
neonatal rat CMs �   2012 

[151] 

PCL aligned 
MWCNTs 

+gelatin coating 
human MSCs �   2013 

[134] 

PCL random Sputtered AuNPs neonatal rat CMs �   2013 [150] 

PLGA aligned PANi +HCl neonatal rat CMs �   2013 [140] 

PLGA 
random & 

aligned 

2 adhesive 

peptides RGD, 

YIGSR, laminin-

coating 

primary CMs 

from neonatal 

rats 

�   2014 

[121] 

PLCL random 
silk fibroin+ Aloe 

Vera + Air plasma 

CMs from 

neonatal rats 
�  

 
2014 

[123] 

PGS:gelatin aligned CNTs neonatal rat CMs �  �  2014 [135] 

PCL coiled fibers AuNPs neonatal rat CMs �  �  2014 [136] 

PVA/BSA random AuNPs human MSCs �  �  2014 [137] 

PGS/fibrinogen random VEGF+MSCs 
human bone 

derived MSCs 
�  

� porcine 

model of 
2015 

[126] 
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differentiated 

into cardiac & 

endothelial cells 

myocardial 

infarction 

PLLA random VEGF + CSCs CSCs �  

� rat model of 

myocardial 

Infarction 

2015 

[127] 

PCL random fibronectin 

neonatal rat 

cardiac cells 

(CM's + 

fibroblasts) 

�  
 

2015 

[153] 

PCL/SF/AV/VitB12/AuNPs   
rabbit CMs + 

human MSCs 
�   2015 

[138] 

PLGA/NCO-sP(EO-stat-

PO) 
random + Neuregulin-1   

� rat model of 

myocardial 

ischemia 

2015 

[124] 

 

Conclusions 

An overview of the polymeric electrospun scaffolds used so far for cardiac tissue engineering 

purposes has been reported in this review. Authors’ opinion is that there is not a unique 

material that can be considered as a panacea for cardiac therapy. Most of the scaffolds made 

by synthetic polymers need post treatment in order to obtain sufficient cell attachment. 

Electrospun scaffolds can be modified using several methods; out of them the most commonly 

used are the co-electrospinning of materials that can improve desired functionalities of the 

initial polymer, and the deposition of biologically functional coatings. Both of them are quite 

simple and non-specialist methods, but can prove to be quite complex in some cases in terms 

of chemical stability, since they can induce undesired changes in the composition of the initial 

polymer.  

In addition, although there are several studies showing the effect of changes in the nanoscale 

in other types of cells and tissues, for the case of cardiac cells only a few recent studies 

examine the effect of the nanoscale on the viability, attachment, shape and proliferation of 

cardiac cells (all of them not on 3D scaffolds). This effect of nanoscale induced changes, can 

tune protein expression and direct the behaviour of cardiac cells, as is the case in other types 

of cells. One could comment and predict that useful insights on the mechanisms of the nano-

environment of the myocardium could be given with the aforementioned studies, and this 

could lead to better control on the fabricated scaffolds, this time in the nanoscale.   

Regarding to surface post-treatment, plasma modification shows a lot of potential and there is 

a huge new interest in the use of plasma to attach, modify and direct cells on electrospun 

nanofibers. The unique ability of plasmas to modify the local chemistry and the surface 

characteristics simultaneously gives them an advantage over other surface modification 

methods. Comparing to the case of using solution chemistry to modify the surface of an 

electrospun nanofiber, plasma provides a lot more control in the amount of chemical species 

used as well as a fully controlled environment for the sample in most of the cases. Additionally, 

the ability to deposit materials with plasmas and also etch using the same equipment could be 

used to create nanotextured surfaces by “knitting” selectively specific areas of the surface, 

leading to fully controlled micron or nano scale regions with different functionalities. For these 

reasons plasma was extensively studied the last few years in terms of tissue engineering for 

several types of cells, but still, there are only a few studies for cardiac cells. 

Though the complexity of cardiac tissue is much bigger than many other types of cells, it is very 

clear that there is a lot of room for the employment of the techniques that are used in the 
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modification of scaffolds for the culturing of other type of cells to cardiac cells. Thus, the 

following years there will be a lot of development in this area.  Generally speaking from the 

studies published so far, it is indicated that composite scaffolds, by combining natural and 

synthetic polymers, are more promising candidates. Their principal advantage is that they can 

synergistically combine the beneficial characteristics of each individual component to form a 

material with superior mechanical/elastic and electrical properties together with the essential 

presence of natural ECM protein adhesion ligands to the cells.  

From the above, it is evident that the material of choice is tightly related to the target 

application:  

- Is an implant to transfer cardiac cells to a part of heart required e.g. left ventricle and then 

removed? In this case, a bioresorbable polymer is the best choice. However, the possibility of 

using a natural polymer that has been modified in order to enhance its mechanical properties 

that in the end it will not degrade or at least degrade slightly is an attractive option as this 

material will not cause any toxicity and inflammation and it will be connected smoothly with 

the ECM. At this point, it is worth noting that the crosslinking method is of paramount 

importance in the case of natural electrospun polymers, as it can affect the 3D structure of the 

scaffold. Special attention should be taken in order not to induce cytotoxicity, as it has been 

observed with glutaraldehyde. 

- Is a polymeric material that replaces a part of heart, such as a valve, required? Then a 

biocompatible but not biodegradable, neither bioresorbable material can be considered as the 

ideal choice. 

As an epilogue, from the aforementioned scientific findings, it is observed that the vast 

majority of the studies concern in vitro results, since only a limited number of published 

articles present in vivo results (see tables I, II, III). Despite the variety of accepted biomaterials 

for clinical applications and successful in vitro studies, just only a few studies describe the 

effective implantation of cardiovascular tissue engineered scaffolds into small animals, and 

even less using large animals. In vivo studies should focus more on the usage of large animals 

that simulates better the human heart and more precisely the human heart rate, even though 

the higher cost is a hindrance. 

In either way, it is a fact that the flurry of experimental papers on cardiac scaffolds sharply 

contrasts with their so far scarce clinical applications, primarily limited to the use of collagen 

and fibrin. This is an issue that postulates the concern of the scientists in the field, in order to 

progress in the final target of the implantation of the fabricated electrospun scaffolds in the 

heart. There are different reasons for this discrepancy: the delayed recognition that delivery 

tools are key factors of the successful outcome of any cell-based intervention and the 

subsequent underuse of the scaffolds designed as cell vehicles; the lack of precise 

understanding of how a given cell type responds to the microenvironmental physical and 

chemical cues provided by a given material, which may have prevented to fully benefit from 

effective cell-material interactions. The main regulatory constraints include the availability of 

the selected scaffold material for human use (including its unrestricted supply, the full 

traceability of all its components and a detailed description of their sourcing), the 

documentation of its biocompatibility (assessed by specific tests to probe cytotoxicity, 

mutagenicity, the extent of the inflammatory and immune responses), the characterization of 

its degradation kinetics and biodistribution patterns and the maintenance of the key material 

properties following a clinically-usable mode of sterilization and storage. It is also mandatory 

that the scaffold can be manufactured according to a robust, scalable and reproducible quality-

controlled process. When the scaffold is intended to be used as a vehicle for cells, cell-material 

interactions also need to be characterized.  
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Electrospinning thus appears as an attractive method might help addressing some of these 

obstacles. In particular it allows, by leveraging the various adjustable settings, to fine-tune the 

3D architecture of the scaffold and thus to optimize the patterning of cells (those seeded or 

embedded in the material as well as those from the host) and/or bioactive ligands in a 

controlled and reproducible fashion which should be helpful for translating the material into a 

clinically-targeted "product". Alternatively, in an era where the paracrine effects of the cells 

are considered their primary mechanism of action, leading to think that they might be 

successfully replaced by their secretome, the precise control over the nanofibrillar scaffold 

network could optimize its functionalization by biologics with regard to their retention and 

release kinetics. Electrospinning could also contribute to expanding the indications of cardiac 

scaffolds by allowing the versatile fabrication of cell-material composites usable as epicardial 

patches intended to be deposited onto the epicardium during a surgical procedure. Finally, 

some of the features of the electrospinning technique, primarily scalability, consistency, and 

reproducibility, might facilitate both industrial production and compliance with regulatory 

requirements.   
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