30 research outputs found

    Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation

    Full text link
    In this paper, we study the influence of the radius of a cylindrical supporting structure on radiation properties of a conformal millimeter-wave antenna array. Bent antenna array structures on cylindrical surfaces may have important applications in future mobile devices. Small radii may be needed if the antenna is printed on the edges of mobile devices and in items which human beings are wearing, such as wrist watches, bracelets and rings. The antenna under study consists of four linear series-fed arrays of four patch elements and is operating at 58.8 GHz with linear polarization. The antenna array is fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due to its good plasticity properties and low losses. Results for both planar and conformal antenna arrays show rather good agreement between simulation and measurements. The results show that conformal antenna structures allow achieving large angular coverage and may allow beam-steering implementations if switches are used to select between different arrays around a cylindrical supporting structure.Comment: Keywords: conformal antenna, millimeter-wave communications, patch antenna array. 11 pages, 10 figures, 1 tabl

    Evaluating the Assumptions of Surface Reflectance and Aerosol Type Selection Within the MODIS Aerosol Retrieval Over Land: The Problem of Dust Type Selection

    Get PDF
    Aerosol Optical Depth (AOD) and Angstrom exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) are compared with ground based sun photometer measurements at eleven sites spanning the globe. Although, in general, total AOD compares well at these sites (R2 values generally over 0.8), there are cases (from 2 to 67% of the measurements depending on the site) where MODIS clearly retrieves the wrong spectral dependence, and hence, an unrealistic AE value. Some of these poor AE retrievals are due to the aerosol signal being too small (total AOD<0.3) but in other cases the AOD should have been high enough to derive accurate AE. However, in these cases, MODIS indicates AE values close to 0.6 and zero fine model weighting (FMW), i.e. dust model provides the best fitting to the MODIS observed reflectance. Yet, according to evidence from the collocated sun photometer measurements and back-trajectory analyses, there should be no dust present. This indicates that the assumptions about aerosol model and surface properties made by the MODIS algorithm may have been incorrect. Here we focus on problems related to parameterization of the land-surface optical properties in the algorithm, in particular the relationship between the surface reflectance at 660 and 2130 nm

    In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Get PDF
    International audiencePublished by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radio-carbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin , i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant , flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies

    Analysis and modeling on co- and cross-polarized urban radio propagation for dual-polarized MIMO wireless systems

    No full text
    Cross-polarization coupling is an important radio propagation characteristic in dual-polarized multiple-input multiple output (MIMO) systems. Still, few studies analyze the polarimetric properties of the radio channel in relation to the actual propagation conditions and processes taking place in urban environment. The topic is studied in the present paper with the aid of dual-polarized MIMO measurements and ray tracing simulations. Several scenarios are considered, and the impact of the different propagation characteristics (LOS, NLOS, link-distance, presence of diffuse-scattering, angular distribution of the signal, etc.) on cross-polarization coupling is analyzed. Generally, a fairly high degree of coupling is observed due to multipath propagation and especially to diffuse scattering. Surprisingly, it does not appear to depend on link distance

    Analysis of radio propagation in co- and cross-polarization in urban environment

    No full text
    The behaviour of radio propagation in co- and crosspolarization in urban environment is studied with the aid of both Ray Tracing simulation and MIMO measurements. A Ray Tracing (RT) model including diffuse scattering has been adopted, therefore allowing the tuning of the RT model and the analysis of the role of diffuse scattering in cross-polarization propagation. A high degree of crosspolarization coupling is observed, especially in NLOS cases, confirming the feasibility of efficient and compact MIMO schemes adopting dual polarized antennas

    Analysis of X-pol Propagation in Microcellular Environment

    No full text
    The behavior of radio propagation in cross-polarization (X-pol) in urban environment is studied with the aid of both MIMO measurements and Ray Tracing simulation. Several microcellular scenarios are considered in the paper (LOS, NLOS, street corner), and the behavior of X-pol discrimination (XPD) as a function of the distance is analyzed. Results show that typical XPD values fall between 8 and 10 dBs, and are nearly independent of link distanc

    Analysis and ray-tracing modelling of co- and cross-polarization radio propagation in urban environment

    No full text
    The co- and cross-polarization behaviour of the urban propagation channel has been studied through both MIMO measurements and ray tracing (RT) simulation. A ray tracing model including diffuse scattering has been adopted, allowing the role of diffuse scattering to be highlighted through comparison between measurement and simulation. The high degree of cross-polarization power transfer observed in both measurement and simulation seems to be partly due to multipath propagation (and to diffuse scattering in particular), and partly due to the polarization behaviour of the antennas

    Aflatoxin M1 binding by lactic acid bacteria in milk

    No full text
    201

    Aflatoxin M1 binding by lactic acid bacteria in milk

    No full text
    corecore