14 research outputs found

    Spatial and temporal variability in summertime dissolved carbon dioxide and methane in temperate ponds and shallow lakes

    Get PDF
    Small waterbodies have potentially high greenhouse gas emissions relative to their small footprint on the landscape, although there is high uncertainty in model estimates. Scaling their carbon dioxide (CO2) and methane (CH4) exchange with the atmosphere remains challenging due to an incomplete understanding and characterization of spatial and temporal variability in CO2 and CH4. Here, we measured partial pressures of CO2 (pCO2) and CH4 (pCH4) across 30 ponds and shallow lakes during summer in temperate regions of Europe and North America. We sampled each waterbody in three locations at three times during the growing season, and tested which physical, chemical, and biological characteristics related to the means and variability of pCO2 and pCH4 in space and time. Summer means of pCO2 and pCH4 were inversely related to waterbody size and positively related to floating vegetative cover; pCO2 was also positively related to dissolved phosphorus. Temporal variability in partial pressure in both gases weas greater than spatial variability. Although sampling on a single date was likely to misestimate mean seasonal pCO2 by up to 26%, mean seasonal pCH4 could be misestimated by up to 64.5%. Shallower systems displayed the most temporal variability in pCH4 and waterbodies with more vegetation cover had lower temporal variability. Inland waters remain one of the most uncertain components of the global carbon budget; understanding spatial and temporal variability will ultimately help us to constrain our estimates and inform research priorities

    How to Assess the Ecological Status of Highly Humic Lakes? Development of a New Method Based on Benthic Invertebrates

    No full text
    Highly humic lakes are typical for the boreal zone. These unique ecosystems are characterised as relatively undisturbed habitats with brown water, high acidity, low nutrient content and lack of macrophytes. Current lake assessment methods are not appropriate for ecological assessment of highly humic lakes because of their unique properties and differing human pressures acting on these ecosystems. This study proposes a new approach suitable for the ecological status assessment of highly humic lakes impacted by hydrological modifications. Altogether, 52 macroinvertebrate samples from 15 raised bog lakes were used to develop the method. The studied lakes are located in the raised bogs at the central and eastern parts of Latvia. Altered water level was found as the main threat to the humic lake habitats since no other pressures were established. A multimetric index based on macroinvertebrate abundance, littoral and profundal preferences, Coleoptera taxa richness and the Biological Monitoring Working Party (BMWP) Score is suggested as the most suitable tool to assess the ecological quality of the highly humic lakes

    How to Assess the Ecological Status of Highly Humic Lakes? Development of a New Method Based on Benthic Invertebrates

    No full text
    Highly humic lakes are typical for the boreal zone. These unique ecosystems are characterised as relatively undisturbed habitats with brown water, high acidity, low nutrient content and lack of macrophytes. Current lake assessment methods are not appropriate for ecological assessment of highly humic lakes because of their unique properties and differing human pressures acting on these ecosystems. This study proposes a new approach suitable for the ecological status assessment of highly humic lakes impacted by hydrological modifications. Altogether, 52 macroinvertebrate samples from 15 raised bog lakes were used to develop the method. The studied lakes are located in the raised bogs at the central and eastern parts of Latvia. Altered water level was found as the main threat to the humic lake habitats since no other pressures were established. A multimetric index based on macroinvertebrate abundance, littoral and profundal preferences, Coleoptera taxa richness and the Biological Monitoring Working Party (BMWP) Score is suggested as the most suitable tool to assess the ecological quality of the highly humic lakes

    Policy brief: : Call for better management of micropollutants in wastewater

    No full text
    Urban wastewater treatment plants are important collection points for many chemical contaminants, often called micropollutants, which are widespread in the aquatic environment. Currently, this issue is not being sufficiently addressed by regional policy and EU-wide legislation. The EU’s Zero Pollution Ambition, the Chemicals Strategy for Sustainability and the likely revision of the Urban Waste-water Treatment Directive now provide opportunities to address this issue. Measures to prevent the emissions of micropollutants via wastewater treatment plants are needed both up- and downstream, to ensure policy coherence between EU water and chemicals legislation

    Policy brief: : Call for better management of micropollutants in wastewater

    No full text
    Urban wastewater treatment plants are important collection points for many chemical contaminants, often called micropollutants, which are widespread in the aquatic environment. Currently, this issue is not being sufficiently addressed by regional policy and EU-wide legislation. The EU’s Zero Pollution Ambition, the Chemicals Strategy for Sustainability and the likely revision of the Urban Waste-water Treatment Directive now provide opportunities to address this issue. Measures to prevent the emissions of micropollutants via wastewater treatment plants are needed both up- and downstream, to ensure policy coherence between EU water and chemicals legislation

    The Impact of Forest Fertilization on the Ecological Quality of Two Hemiboreal Streams

    No full text
    The present study aimed to detect any changes in concentrations of nutrients and evaluate the impact on the quality of two hemiboreal streams that collect a discharge from two fertilized Scots pine stands. In 2017, nitrogen-containing mineral fertilizer was spread in pine stands on mineral soil located near the first stream. In 2018, potassium containing wood ash was spread in pine stands on organic soil near the second stream. From 2017 to 2020, surveys of physico-chemical parameters, diatoms, macrophytes, and macroinvertebrates were performed to determine the possible effects of fertilization on the ecological quality of the streams. A control site upstream of the fertilized forest stand and a treatment site downstream of the fertilized forest stand was monitored at each stream. Water quality indices, chemical parameters of surface water, and indicator species analysis showed no short-term impact of forest soil improvement with wood ash and ammonium nitrate. We found no clear patterns before and after the fertilization events in both streams, although we did observe inter- and intra-annual differences in aquatic biota and stream ecological quality mainly caused by local environmental factors

    Micropollutants in urban wastewater : large-scale emission estimates and analysis of measured concentrations in the Baltic Sea catchment

    No full text
    Highlights ‱ Comprehensive study of micropollutants measured in effluents in the Baltic Sea region ‱ Concentration data were found for ⁓90,000 observations and >1000 individual substances. ‱ Differences in observed levels between countries were assessed. ‱ Catchment scale total mass loads via WWTPs were calculated for 280 chemical contaminants.Wastewater treatment plants (WWTPs) transmit many chemical contaminants to aquatic environments. Quantitative data on micropollutant emissions via WWTPs are needed for environmental risk assessments and evaluation of mitigation measures. This study compiled published data on substances analysed in effluents from WWTPs in the Baltic Sea region, assessed country related differences in the data sets and estimated micropollutant inputs to the Baltic Sea catchment. Concentration data were found for 1090 substances analysed at 650 WWTPs. Heterogeneity and low number of data points for most substances hindered adequate comparisons of country specific concentrations. Emission estimates were made for the 280 substances analysed in at least five WWTPs in years 2010 to 2019. For selected substances, mass loads were compared to previously published estimations. The study provides data useful for national and Baltic Sea-scale pressure analysis and risk assessments. However, it also highlights the need for broad scope monitoring of micropollutants in wastewater

    <i>In Situ</i> Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes

    No full text
    A promising profiling setup for in situ measurements in lakes with potentiometric solid-contact ion-selective electrodes (SC-ISEs) and a data processing method for sensor calibration and drift correction are presented. The profiling setup consists of a logging system, which is equipped with a syringe sampler and sensors for the measurement of standard parameters including temperature, conductivity, oxygen and photosynthetically active radiation (PAR). The setup was expanded with SC-ISEs in galvanically separated amplifiers. The potential for high-resolution profiling is investigated by deploying the setup in the eutrophic Lake Rotsee (Lucerne, Switzerland), using two different designs of ammonium sensing SC-ISEs. Ammonium was chosen as a target analyte, since it is the most common reduced inorganic nitrogen species involved in various pathways of the nitrogen cycle and is therefore indicative of numerous biogeochemical processes that occur in lakes such as denitrification and primary production. One of the designs, which uses a composite carbon-nanotube–PVC-based membrane, suffered from sulfide poisoning in the deeper, sulfidic regions of the lake. In contrast, electrodes containing a plasticizer-free methacrylate copolymer-based sensing layer on top of a conducting polymer layer as a transducer did not show this poisoning effect. The syringe samples drawn during continuous profiling were utilized to calibrate the electrode response. Reaction hotspots and steep gradients of ammonium concentrations were identified on-site by monitoring the electrode potential online. Upon conversion to high-resolution concentration profiles, fine scale features between the calibration points were displayed, which would have been missed by conventional limnological sampling and subsequent laboratory analyses. Thus, the presented setup with SC-ISEs tuned to analytes of interest can facilitate the study of biogeochemical processes that occur at the centimeter scale

    Data from: Widespread increases in iron concentration in European and North American freshwaters

    No full text
    Recent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends, or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28% of sites, and decreased in 4%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Hence, Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional-scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land-use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in non-forested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters
    corecore