143 research outputs found

    Revision of the Italian Peace Treaty

    Get PDF

    Quasiparticle spectrum of a type-II superconductor in a high magnetic field with randomly pinned vortices

    Full text link
    We show that gapless superconductivity of a strongly type-II superconductor in a high magnetic field prevails in the presence of disorder, suggesting a topological nature. We calculate the density of states of the Bogoliubov-de Gennes quasiparticles for a two-dimensional inhomogeneous system in both cases of weak and strong disorder. In the limit of very weak disorder, the effect is very small and the density of states is not appreciably changed. As the disorder increases, the density of states at low energies increases and the ratio of the low-energy density of states to its maximum increases significantly

    QED3 theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via "algebraic" Fermi liquid

    Full text link
    High-TcT_c cuprates differ from conventional superconductors in three crucial aspects: the superconducting state descends from a strongly correlated Mott-Hubbard insulator, the order parameter exhibits d-wave symmetry and superconducting fluctuations play an all important role. We formulate a theory of the pseudogap state in the cuprates by taking the advantage of these unusual features. The effective low energy theory within the pseudogap phase is shown to be equivalent to the (anisotropic) quantum electrodynamics in (2+1) space-time dimensions (QED3_3). The role of Dirac fermions is played by the nodal BdG quasiparticles while the massless gauge field arises through unbinding of quantum vortex-antivortex degrees of freedom. A detailed derivation of this QED3_3 theory is given and some of its main physical consequences are inferred for the pseudogap state. We focus on the properties of symmetric QED3_3 and propose that inside the pairing protectorate it assumes the role reminiscent of that played by the Fermi liquid theory in conventional metals.Comment: 31 pages, 4 figures; replaced with revised versio

    Proposed Standards for Medical Education Submissions to the Journal of General Internal Medicine

    Get PDF
    To help authors design rigorous studies and prepare clear and informative manuscripts, improve the transparency of editorial decisions, and raise the bar on educational scholarship, the Deputy Editors of the Journal of General Internal Medicine articulate standards for medical education submissions to the Journal. General standards include: (1) quality questions, (2) quality methods to match the questions, (3) insightful interpretation of findings, (4) transparent, unbiased reporting, and (5) attention to human subjects’ protection and ethical research conduct. Additional standards for specific study types are described. We hope these proposed standards will generate discussion that will foster their continued evolution

    Workshop Report for Cancer Research: Defining the Shades of Gy: Utilizing the Biological Consequences of Radiotherapy in the Development of New Treatment Approaches—Meeting Viewpoint

    Get PDF
    The ability to physically target radiotherapy using image-guidance is continually improving with photons and particle therapy that include protons and heavier ions such as carbon. The unit of dose deposited is the gray (Gy); however, particle therapies produce different patterns of ionizations, and there is evidence that the biological effects of radiation depend on dose size, schedule, and type of radiation. This National Cancer Institute (NCI)–sponsored workshop addressed the potential of using radiation-induced biological perturbations in addition to physical dose, Gy, as a transformational approach to quantifying radiation

    Numerical simulations of jets

    Get PDF
    When astrophysical jets were discovered one hundred years ago, the field of numerical simulations did not yet exit. Since the arrival of programmable computers though, numerical simulations have increasingly become an indispensable tool for dealing with “tough nut” problems which involve complex dynamic and non-linear phenomena. Astrophysical jets are an ideal example of such a tough nut, where multi-scale plasma physics, radiative and non-thermal processes, turbulence and relativity combine to present a formidable challenge to researchers. Highlighting major achievements obtained through numerical simulations concerning the validity and nature of the Blandford–Znajek mechanism, the launching, collimation, acceleration and stability of jets, their interaction with the surrounding plasma, jet-galaxy feedback mechanisms etc., we trace how the field developed from its first tentative steps into the age of “maturity”. We also give a brief and personal outlook on how the field may evolve in the foreseeable future

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore