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A B S T R A C T

When astrophysical jets were discovered one hundred years ago, the field of numerical simulations did not yet
exit. Since the arrival of programmable computers though, numerical simulations have increasingly become
an indispensable tool for dealing with ‘‘tough nut’’ problems which involve complex dynamic and non-linear
phenomena. Astrophysical jets are an ideal example of such a tough nut, where multi-scale plasma physics,
radiative and non-thermal processes, turbulence and relativity combine to present a formidable challenge to
researchers.

Highlighting major achievements obtained through numerical simulations concerning the validity and
nature of the Blandford–Znajek mechanism, the launching, collimation, acceleration and stability of jets,
their interaction with the surrounding plasma, jet-galaxy feedback mechanisms etc., we trace how the field
developed from its first tentative steps into the age of ‘‘maturity’’. We also give a brief and personal outlook
on how the field may evolve in the foreseeable future.
1. Introduction

1.1. The numerical approach

Twenty five years after the discovery of the M87 jet by Curtis
(1918), the efforts of the British to break encrypted communications
of the Germans during the WW2 were facilitated by the arrival of
the first ever electronic programmable computer Colossus (Copeland,
2006). Two years later, US military was provided with ENIAC, the
first ‘‘Turing-complete’’ or ‘‘computationally-universal’’ electronic com-
puter (Copeland, 2017). These ancestors of modern computers were
huge, cumbersome, slow and had very limited memory, but they paved
the way to the technological revolution which affected all aspects of
modern society, including science.

In theoretical physics, natural phenomena are described by various
mathematical equations. Some of them are purely descriptive, like the
equations of the particle kinematics. But the most important ones only
formulate the laws that govern the evolution of physical systems. As
such they do not just provide ready-made descriptions to any particular
process or phenomena. Instead such specific descriptions have to be
found via solving these dynamic equations given the conditions of
the specific problem under consideration. These dynamical laws are
ordinary or partial differential equations.

On rare occasions, exact solutions can be found in the form of
well-studied analytic functions or infinite expansions in terms of such
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functions. Normally, this is the case where the dynamical laws are lin-
ear equations. Unfortunately for the theorists, most natural phenomena
are more complex than this and governed by non-linear equations. This
causes theorists to take the route of simplification. For example, a num-
ber of terms in the equations can be ignored. A number of symmetry
conditions on the types of solutions can be imposed, allowing to reduce
the dimensionality of the problem and hence deal with dynamic laws
of simpler form. Quite often these conditions are rather artificial and
driven not as much by the nature of the physical phenomena under
consideration but rather by the desire to deal with an analytically-
tractable mathematical problem. Finally, one may consider problems
which involve small parameters or deal only with asymptotic regimes
and look for approximate analytic solutions. Quite often the complexity
comes from the large number of interacting components. For example,
in Newtonian mechanics, the problem of motion under the action of
gravity has a general analytic solution in the case of two interacting
point bodies (masses), but already in the case of three bodies a general
solution does not exist. Similarly, the dynamics of a system of micro-
scopic particles interacting electromagnetically (plasma) can only be
studied numerically. The fluid model of plasma simplifies the problem
and yet the number of interacting components in this model is formally
infinite since the fluid systems are continuous in space.

As an alternative to the analytic approach, one can look for a
numerical representation of solutions. For example, the space–time
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domain of a fluid model can be covered by a grid of points and in
every point of the grid the fluid can described by the local values of its
dependent variables. In order to represent the solution, the values at the
neighboring points have to satisfy the approximate discrete versions of
the governing differential equations. In this way, an infinite number of
interacting elements is replaced with a finite number. Obviously, for the
numerical solution to be reasonably accurate the number of grid points
has to be large and so is the amount of calculations needed to populate
them with the values of dependent variables. This is why before the
arrival of powerful computers, the numerical approach was practical
only for a rather limited number of mathematical problems.

Since 1960 the computational power of the most powerful super-
computer in the world was doubling on average every 18 months and
has increased by the whooping 1012 times. Miniaturization of computer
chips, ever decreasing cost of their manufacturing, development of
high-speed networks and software for distributed computing are behind
this rapid advance. The design of supercomputers has changed from sin-
gle units to compute clusters. The power of second-tier supercomputers
has been growing at similar rate and what yesterday could be afforded
only by the big national research centers of rich countries is available
today at many research institutes and research-active universities.

This technological revolution has changed dramatically the role of
the numerical approach and moved it from the periphery of scientific
exploration to the very center of modern research. Whereas in the past
it could be used to deal only with rather limited types of problems,
nowadays it allows to simulate the dynamics of complex natural phe-
nomena. A new branch of theoretical research has emerged, which
can be described as experimental theoretical science. It is based on
creating a kind of artificial reality and carrying out controlled exper-
iments aimed at learning more about nature. Provided the theoretical
framework (the set of evolution equations) is adequate, the numerical
method is efficient and the computational power is sufficient, the
outcome can be very close to reality in many respects. This approach is
particularly valuable where real experiments are practically impossible,
which includes the whole of Astrophysics.

1.2. Astrophysical jet plasma

The astrophysical jets are high-velocity flows of plasma/gas. Al-
though this plasma is very rarefied and often collisionless, there are
good reasons to believe that the fluid description of the jet dynamics
is mostly adequate (Begelman et al., 1984). The Larmor gyration and
collective interactions are expected to introduce an effective collisional
free path which is much smaller compared to the free path for the
two-body Coulomb interaction. The same applies to many other as-
trophysical phenomena. For this reason, the efforts of astrophysical
numericists have been focused on developing of efficient computational
tools for compressible fluid dynamics and magnetohydrodynamics. For
future reference, here we present the Newtonian and relativistic ver-
sions of these system of equations written in the form of conservation
laws.

Ideal compressible Newtonian hydrodynamics (HD) includes the
conservation laws for the mass

𝜕𝑡𝜌 + ∇⋅ (𝜌𝐯) = 0 , (1)

nergy

𝑡(𝜌𝑣2∕2 + 𝑒) + ∇⋅ ((𝜌𝑣2∕2 +𝑤)𝐯) = 0 , (2)

nd momentum

𝑡𝜌𝐯 + ∇⋅ (𝜌𝐯𝐯 + 𝑝𝐠) = 0 , (3)

here 𝜌, 𝑝, 𝑒, 𝑤 = 𝑒 + 𝑝 and 𝐯 are the mass density, pressure, thermal
nergy, enthalpy and velocity of the fluid respectively and 𝐠 is the
etric tensor of Euclidean space. Source terms may replace the zeros

n the right-hand side of these equations when gravity, radiation,
2

ass-loading etc. are dynamically important. To close the system we e
eed additional equations which express the relationships between the
hermodynamic parameters, the so-called equation of state (EoS).

The corresponding laws of ideal special relativistic hydrodynamics
SRHD) are

𝑡𝜌𝛾 + ∇⋅ (𝜌𝛾𝐯) = 0 , (4)

𝑡(𝑤𝛾2 − 𝑝) + ∇⋅ (𝑤𝛾2𝐯) = 0 , (5)

nd momentum

𝑡𝑤𝛾2𝐯 + ∇⋅ (𝑤𝛾2𝐯𝐯 + 𝑝𝑐2𝐠) = 0 , (6)

here 𝑤 = 𝜌𝑐2 + 𝑒 + 𝑝 is the relativistic enthalpy which includes the
est mass-energy density of plasma particles and 𝛾 = (1 − 𝑣2∕𝑐2)−1∕2

s the Lorentz factor with the speed of light 𝑐. All the thermodynamic
arameters are defined as measured in the reference frame comoving
ith the fluid.

The conservation laws of perfect Newtonian magnetohydrodynam-
cs (MHD) are

𝑡𝜌 + ∇⋅ (𝜌𝐯) = 0 , (7)

𝑡(𝜌𝑣2∕2 + 𝑒 + 𝐵2∕8𝜋) + ∇⋅ ((𝜌𝑣2∕2 +𝑤 + 𝐵2∕4𝜋)𝐯 − (𝐯 ⋅ 𝐁)𝐁) = 0 (8)

nd

𝑡𝜌𝐯 + ∇⋅ (𝜌𝐯𝐯 − 𝐁𝐁∕4𝜋 + (𝑝 + 𝐵2∕8𝜋)𝐠) = 0 . (9)

n addition the system includes the Faraday law
1
𝑐
𝜕𝑡𝐁 + 𝛁 × 𝐄 = 0 , (10)

he Gauss law

⋅ 𝐁 = 0 (11)

nd the perfect conductivity equation

= −1
𝑐
𝐯 × 𝐁 . (12)

he Faraday equation can also be treated as a conservation law. Only
he magnetic field 𝐁 contributes to the electromagnetic energy density
nd pressure, as the electric field is small for 𝑣 ≪ 𝑐. Although we
etained 𝑐 in (10) and (12), it cancels out upon the substitution of 𝐄
12) into (10).

The conservation laws of ideal special relativistic magnetohydrody-
amics (SRMHD) are

𝑡𝜌𝛾 + ∇⋅ (𝜌𝛾𝐯) = 0 , (13)

𝑡(𝑤𝛾2𝑣2∕2 − 𝑝 + 𝑒𝑚) + ∇⋅ (𝑤𝛾2𝐯 + 𝐒) = 0 , (14)

𝑡(𝑤𝛾2𝐯 + 𝐒) + ∇⋅ (𝑤𝛾2𝐯𝐯 − (𝐄𝐄 + 𝐁𝐁)𝑐2∕4𝜋 + (𝑝 + 𝑝𝑚)𝑐2𝐠) = 0 , (15)

here 𝑝𝑚 = (𝐵2 +𝐸2)∕8𝜋 is the electromagnetic pressure 𝑒𝑚 = 𝑝𝑚 is the
lectromagnetic energy density, and 𝐒 = (𝐄 × 𝐁)𝑐∕4𝜋 is the Poynting
lux. The Faraday law, the Gauss law and the perfect conductivity
ondition are exactly the same as in the Newtonian MHD. Here 𝐁, 𝐄
re the magnetic and electric fields as measured in the frame where
he fluid is moving with the velocity 𝐯, the so-called laboratory frame.

The inclusion of general relativistic effects does not fundamentally
lter the nature of the equations for the magnetohydrodynamical (test-)
luid (Anile and Pennisi, 1987). Especially when written in terms of the
hysical parameters as measured by a local fiducial observer at rest in
he space of a 3+1 spacetime splitting, the general relativistic versions
f HD and MHD take on a form very similar to the special relativistic
ariant (e.g. Koide, 2003; Del Zanna et al., 2007). In essence, the
quations remain hyperbolic conservation laws where gravity enters
hrough source terms (e.g. Komissarov, 1999a, 2001b, 2004b; Porth
t al., 2017).
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The most successful approach for these systems is based on the
so-called upwind numerical schemes for hyperbolic systems of con-
servation laws. This approach allows to preserve the global integrals
of motion, such as the total energy, mass and momentum down to
the rounding error of computer processors and handle shock waves
very accurately even in the simulations with rather low grid resolu-
tion (e.g. Martí and Müller, 2015). Magnetohydrodynamics presents an
additional challenge as the magnetic field must satisfy the Gauss law.
Although this differential constraint is preserved by the exact Faraday
equation, this is not necessarily true for its discretized versions, which
may lead to large errors and even to complete corruption of the numer-
ical solution. A number of successful techniques has been developed
to deal with this issue, such as the constraint transport (CT) (Balsara
and Spicer, 1999; Evans and Hawley, 1988) and generalized Lagrange
multiplier (GLM) methods (Dedner et al., 2002). Another important
advance is the development of adaptive grid techniques, which allows
to increase the numerical resolution in highly dynamic regions with
interesting small-scale structures and reduce it elsewhere. Finally, the
development of publicly available codes has allowed a much broader
astrophysical community with less advanced coding skills to carry out
computer simulations.

2. Infancy

The first numerical study of astrophysical jets was carried out
by Rayburn (1977). They focused on the structure created via the
interaction of a 2D uniform supersonic cylindrical non-relativistic and
unmagnetized flow with an external medium of either uniform density
or density decreasing with the distance from the injection nozzle. They
used a particle-in-cell code (PIC) for fluid dynamics where the fluid is
represented by a collection of macro-particles. The computational grid
had just 10 × 20 grid cells and 16 particles per cell. Yet, they were able
to confirm the development of two shocks — the forward bow shock
driven by the jet into the external gas and the reverse shock terminating
the supersonic flow of the jet itself (Scheuer, 1974; Blandford and Rees,
1974). They also observed the development of a rarefied cocoon around
the jet made out of gas heated at the termination shock, see Fig. 1 of a
reproduction from the paper by Rayburn (1977).

Norman et al. (1981) used non-relativistic 2D hydro-simulations to
see if a hot gas continuously supplied in the center of a gravitationally
bound cloud can escape in the form of jets as this was envisaged in
the twin-exhaust model (Blandford and Rees, 1974). They used a finite
difference code on a 40 × 40 grid. The results of the simulations did not
uite agree with the theoretical model. The hot gas did form a cavity
nside the cloud but did not uniformly fill it like in the combustion
hamber of a rocket engine. Instead, it produced a supersonic wind
merging from its source and terminating at a spherical shock. Only
fter this the hot shocked gas escaped along the least resistance route
hrough the channel shaped in the form of the Laval nozzle. Moreover,
he central cavity developed the Rayleigh–Tailor instability capable of
estroying the nozzle. This was a very good early example of how
omputer simulations can be used to develop a much better understand-
ng of an astrophysical problem compared to a highly simplified and
ver-constrained theoretical model. The history of jet studies has many
xamples like this.

Later, a similar approach was used by MacFadyen and Woosley
1999) and Aloy et al. (2000) in their study of the possibility to generate
ets during the gravitational collapse of massive rotating stars, with
pplication to GRBs. In these 2D Newtonian simulations a large amount
f energy was continuously deposited in the polar region above the
yper-accreting disk which was cooling via neutrino emission. The rate
f the energy deposition was based on the estimated annihilation rate of
he disk-emitted neutrinos. Initially, the inertia of the gas accreting via
he polar region was too great to overcome but in time, the supply of
3

ow angular momentum mass reduced, the density in the polar region
dropped and powerful supersonic jets emerged from the energy deposi-
tion region. These jets were collimated by the centrifugally-supported
‘‘walls’’ of the accreting gas.

Norman et al. (1982) carried out the first systematic study of non-
relativistic axisymmetric fluid jets drilling their way through a uniform
external gas. The setup was similar to that of Rayburn (1977) but
with much higher numerical resolution, 240 × 60 grid, and a different
numerical approach. The simulations were carried out on a CRAY-1
supercomputer with each run requiring 2–3 h of CPU time. They not
only confirmed the large scale structure found in Rayburn’s study but
also revealed a lot of new fine details, including the quasi-stationary
chain of conical shocks driven into the jet by the high pressure of
its cocoon, the development of the Kelvin–Helmholtz instability and
mixing at the jet/cocoon interface and the interface separating the
shocked external gas from the shocked jet gas in the cocoon. In the
setup, the density 𝜌𝑒 and pressure 𝑝𝑒 of the external gas were fixed
and the jet pressure at the inlet was assumed to be the same as that
of the external gas, 𝑝𝑗 = 𝑝𝑒. The numerical models were differentiated
by the density ratio 𝜂 = 𝜌𝑗∕𝜌𝑒 and the jet Mach number 𝑀𝑗 = 𝑣𝑗∕𝑎𝑠,𝑗
at the inlet (𝑎𝑠,𝑗 is the jet sound speed.). Obviously, higher values of
𝜂 and 𝑀𝑗 imply a higher jet thrust and hence a higher advance speed
of its head 𝑣ℎ and only when 𝑣ℎ ≪ 𝑣𝑗 the jet is expected to inflate an
extensive cocoon. This expectation was confirmed and quantified in the
simulations.

In the jet simulations by Rayburn (1977) and Norman et al. (1982),
as well as in the numerous other studies that followed, the jets were
injected into the computational domain as cylindrical flows with veloc-
ities perfectly aligned to the symmetry axis. Such a perfect collimation
ignores the initial expansion of astrophysical jets on their way from the
central engine to the remote locations where the observed interaction
with the external gas takes place. This expansion can be inhibited
when the external pressure becomes sufficiently large to bend the
jet streamlines and thus increase its collimation. In supersonic jets
this must be achieved via a conical shock wave called a collimation
or reconfinement shock. The steady-state structure of supersonic jets
reconfined by the pressure of hot coronas of giant elliptical galaxies
was first studied by Sanders (Sanders, 1983), who used the method of
characteristics, and then by Falle and Wilson (1985), who used time-
dependent simulations accelerated via a multigrid technique. In the
latter study the finest grid had 144 × 2192 cells allowing more than
24 cells per jet radius. The studies have shown that the recollimation
shock triggers a downstream chain of conical shocks with progressively
increasing separation between them which was reminiscent of the
chain of bright knots in the M87 jet. Fig. 2 illustrates the sequence
of reconfinement shocks found in the solution of Falle and Wilson
(1985). Assuming the M87 jet is in the plane of the sky (more recent
observations suggest an inclination of the jet-axis by only 17◦ (Walker
et al., 2018; Akiyama et al., 2019)), for the chosen parameters, the
placement of the shocks matches quite well with the spacing of the
observed bright knots.

The jet reconfinement can also be driven by the pressure of its
own cocoon. Here the problem is more complicated as the cocoon is
a dynamic structure and its pressure evolves in time and so does the
distance of the recollimation shock from the source and the jet radius
after the reconfinement. In this regard the problem is qualitatively
different from the less realistic one considered by Norman et al. (1982),
where the jet is perfectly collimated already at the nozzle. The first
simulations of initially conical non-relativistic axisymmetric hydro jets
drilling their way through a uniform external gas was carried out
by Falle (1991a). They used a shock-capturing second order Godunov
scheme and their computational grid had 200 × 600 cells. These
simulations have demonstrated that once the cocoon has expanded and
its pressure dropped sufficiently to allow a significant increase of the jet
radius after the recollimation compared to its radius at the nozzle, the
overall evolution of the whole structure enters a phase of approximate

self-similar behavior, where all its key parameters vary as power-laws
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Fig. 1. Density visualization of the jet simulations by Rayburn (1977). One can make out the rarefied cocoon composed of jet material (marked with *-symbols), the forward
bow-shock in the ambient medium (marked with +-symbols) and the termination shock of the beam.
Fig. 2. Chain of reconfinement shocks compared to the observed spacing in M87 (capital letters) from Falle and Wilson (1985). Shown are pressure contours for an axisymmetric
steady jet with 𝑀𝑗 (0) = 3.5, 𝑝𝑗 (0) = 1.5𝑝0 and 𝑅𝑗 (0) = 0.08𝑟c, calculated on a 144 × 2192 grid. The observed position of the knows are marked on top, and the distance scale on
the bottom is in units of the core radius 𝑟𝑐 .
in time. The results were in accord with the analytic model presented
in the same paper.

The fact that the AGN jets are magnetized and relativistic prompted
the development of computer codes that could handle such flows.
The first simulations of magnetized non-relativistic jets were carried
out by Clarke et al. (1986). They used a numerical scheme for ax-
isymmetric MHD which was a straightforward generalization of their
earlier code for HD and evolved the poloidal magnetic field via the
magnetic potential. The setup of their jet simulations was identical
to that of Norman et al. (1982), but the injected flow carried out an
azimuthal (toroidal) magnetic field which increased linearly with the
distance from the axis. At the jet edge the ratio of magnetic and thermal
pressures was 𝛽 = 0.2. The computational grid had 600 × 100 cell
and the simulations were carried out on a Cray X-MP supercomputer.
The simulated jet did not produce the typical cocoon of its hydro
counterparts as the shocked jet plasma was flowing not backwards
towards the nozzle but forward where it formed a magnetically-pinched
extended structure in front of the termination shock (dubbed the ‘‘nose
cone’’). Later, with the advent of the 3D era in computer simulations,
it was shown that the nose cone was an artifact caused by the imposed
condition of axisymmetry, which prevented the jet from developing of
non-axisymmetric instabilities (Mignone et al., 2010).

The magnetic launching of jets in the context of disk accretion
onto non-relativistic compact objects was first simulated by Uchida and
Shibata (1985). Their initial setup involved a relatively thin radially
unbalanced sub-Keplerian disk, surrounded by a uniform ‘‘corona’’. The
whole configuration was threaded by a uniform magnetic field aligned
with the rotational symmetry axis. As the simulations start, the inner
unbalanced part of the accretion disk collapses, advecting the magnetic
field towards the center and twisting it up in the process. The build-
up magnetic pressure due to the generated azimuthal magnetic field
then drives the less dense gas of the inner disk away in the form of
a hollow collimated outflow. The authors commented that the process
developed even for a Keplerian disk but at a slower rate. In this case, the
accretion was driven by the vertical transport of the angular momentum
facilitated by the large-scale magnetic field.
4

Relativistic fluids are more complex with tight interconnections
between conserved variables and fluxes imposed by the covariant equa-
tions of their dynamics. For example, all types of energy, the rest
mass-energy of particles, the thermal energy, the kinetic energy of
bulk motion and the magnetic energy contribute to the inertial mass
of fluid elements. A change in one component of the velocity vector
modifies the momentum vector in all directions. This severely restricts
the freedom of dealing with the transport of conserved quantities sepa-
rately from one another, which exists in computational Newtonian fluid
dynamics, and hence presents a new challenge (Norman and Winkler,
1986). An additional problem arises for numerical schemes whose
design is based on the assumption of smoothness of solution. This is
important because even initially smooth (or strong) solutions of com-
pressible fluid dynamics can eventually develop discontinuities (weak
solutions or shocks) via the nonlinear steepening of compression waves.
In Newtonian fluids, this steepening can be limited via the method of
artificial viscosity which introduces a strong additional flux term in the
momentum equation. However, in relativistic fluids, the viscosity enters
all components of the stress–energy–momentum tensor, including the
energy and momentum density (Landau and Lifshitz, 1959). Hence
any artificial modification of the momentum equation alone introduces
inconsistencies which may result in arriving at nonphysical states (The
same applies to other artificial ways of smoothing solutions, e.g. van
Putten, 1993). After several attempts by various groups of researchers it
was found that the most satisfactory performance was delivered by the
so-called shock-capturing upwind numerical methods. These methods
evolve all equations simultaneously, do not rely on artificial viscosity,
do not require special treatment for weak solutions and extensively
utilize the information on the causal connectivity between fluid el-
ements. The first such schemes for relativistic HD were developed
by Eulderink and Mellema (1994), Font et al. (1994) and Falle and
Komissarov (1996) and for relativistic MHD by Komissarov (1999a).
Readers interested in a more comprehensive review will find the paper
by Font (2008) useful.

Understandably, many early simulations of relativistic jets were car-
ried out more as trials of numerical schemes rather than as jet studies
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and described just a single model (van Putten, 1993; Marti et al., 1994;
Koide et al., 1996; Nishikawa et al., 1997). Others were focused on
understanding the difference in dynamics of relativistic jets compared
to their Newtonian counterparts and involved a parameterized set of
numerical models (Yokosawa et al., 1982; Duncan and Hughes, 1994;
Martí et al., 1997). The setup of these early simulations was identical
to that of Norman et al. (1982). The issue of parametrization of the
relativistic models is important for making a meaningful comparison
with the Newtonian ones. For example, one may choose to use exactly
the same parameters as in Norman et al. (1982), 𝜂 = 𝜌𝑗∕𝜌𝑒 and 𝑀𝑗 =
𝑣𝑗∕𝑎𝑠,𝑗 . In this case, given that 𝑣𝑗 ≈ 𝑐 and 𝑎𝑗 is determined by the
values of 𝜂 and 𝑝𝑗 = 𝑝𝑒, a small variation of 𝑀𝑗 corresponds to large
variation of the Lorentz factor. This results in a large variation of the
jet ram pressure, 𝑤𝛾2𝑣 (see Eq. (6)), and hence the advance speed of
its head, leading to claims that relativistic jets are much more efficient
‘‘drillers’’ of the external medium. However, as the jet Lorentz factor
is not an independent parameter here, the result simply indicates that
this particular parametrization is rather unfortunate because it leads to
the degeneracy of numerical models.

In fact, the parameter 𝑣∕𝑎 does not have the same physical mean-
ing in relativistic hydrodynamics as in the Newtonian one. In the
Newtonian framework,

𝑀 = 1∕ sin 𝜃𝑚 , (16)

where 𝜃𝑚 is the half-opening angle of the Mach cone. This cone defines
the zone of influence of a point-like disturbance established by means
of sound waves and hence the causal connectivity of supersonic flows.
Using Eq. (16) to define the Mach angle in the relativistic framework,
one obtains

𝑀 =
𝑣𝛾
𝑎𝛾𝑎

, (17)

here 𝛾𝑎 = (1− (𝑎∕𝑐)2)−1∕2 (Konigl, 1980; Komissarov and Falle, 1998).
otice that like in the Newtonian case 𝑀 = 1 implies 𝑣 = 𝑎 but now 𝑀
rows like 𝛾 in the ultra-relativistic regime. Sometimes it is claimed
hat relativistic jets have enhanced stability properties compared to
ewtonian jets. This claim also arises from interpreting 𝑣𝑗∕𝑎𝑠,𝑗 as the
ach number of relativistic jets. However, the actual Mach number

iven by (17) is normally much higher. When the correct definition
s used, the claim of enhanced stability for relativistic flows becomes
aseless (see Section 3.5).

A similar care has to be taken when defining the density-ratio
arameter 𝜂. Which mass density should be used? This could be the
roper rest mass density 𝜌 (the mean rest mass of particles times their
umber density as measured in the rest frame of the fluid), the rest
ass density as measured in the laboratory frame (the frame of the

imulation) 𝜌1 = 𝛾𝜌, the inertial mass density due to the rest mass of
articles 𝜌2 = 𝛾2𝜌 or the total inertial mass density

3 = 𝛾2(𝑤∕𝑐2) , (18)

here 𝑤 = 𝜌𝑐2 + 𝑒 + 𝑝 is the relativistic enthalpy. In principle, each
f these quantities can be used for the purpose of parametrization
f relativistic models. If however we wish to compare them with the
ewtonian models, we need to remember that in the Newtonian physics

he mass density is the inertial mass density and hence the relativistic
odels have to be parametrized using 𝜌3, leading to the mass-density

atio parameter

=
𝑤𝑗𝛾2𝑗
𝑤𝑒

. (19)

For a cold (in the relativistic sense) jet and external medium, one can
ignore the thermal mass-energy and replace 𝑤 with 𝜌. With the rela-
tivistic definitions (17), (19), the degeneracy of relativistic models is re-
moved and the difference in the propagation efficiency and stability of
relativistic and Newtonian jets is no longer that dramatic (Komissarov
and Falle, 1996; Komissarov and Falle, 1998; Rosen et al., 1999).
5

While the jet trust 𝛱𝑗 = 𝜌𝑣𝑗 determines the speed at which the head
of a hypersonic jet advances through the external gas, the speed of the
sideways expansion of its cocoon is determined by the rate at which it
is supplied with the thermal energy by the jet, that is by the jet power
𝐿𝑗 . From (2), (3), it follows that these are related as

𝐿𝑗 =
𝑣𝑗
2
𝛱𝑗 . (20)

Thus given the same thrust, a faster jet inflates a bigger cocoon. This
trend is already seen in the pioneering simulations by Yokosawa et al.
(1982). In the relativistic hydrodynamics

𝐿𝑗 = 𝑐𝛱𝑗 (21)

(see Eqs. (5), (6)), showing that (20) extends quite well even into the
ultra-relativistic regime.

The first numerical simulations of relativistic magnetized jets were
carried out by Koide et al. (1996). They studied the propagation of a
slab jet injected along a uniform external magnetic field of a uniform
external medium. Later, the same problem was addressed using 3D
simulations in the case of a cylindrical jet (Nishikawa et al., 1997).
This problem is not particularly relevant to astrophysical jets but is
more like a test problem for a numerical code. The magnetic field of
astrophysical jets is much stronger than that of the external gas and it is
expected to have a significant if not dominating azimuthal component.
More realistic simulations were carried out by Komissarov (1999b),
who studied the dynamics of axisymmetric jets with purely azimuthal
magnetic field. Using the same settings as in the earlier Newtonian
studies (Clarke et al., 1986; Lind et al., 1989), they focused on the
conditions for developing the nose cone and also encountered the
problem of appropriate jet parametrization in the process. Via analysis
of relativistic MHD shocks, it was shown that the main jet parameter
deciding the development of the nose cone was not the Newtonian
magnetization parameter 𝛽 but the relativistic parameter 𝜎 = 𝐵2

0∕𝜌0
(for hot flows 𝜎 = 𝐵2

0∕𝑤), where 𝐵0 is the magnetic field strength
as measured in the jet frame. This conclusion was supported by the
computer simulations carried out on a single processor workstation,
with 300 × 1000 numerical grid, which demonstrated the development
of substantial nose cones for 𝜎 ≳ 0.1.

The first attempt at the simulation of magnetic jet production in the
context of general relativistic framework was made out by Koide et al.
(1998, 1999). They considered a slender Keplerian disk around a non-
rotating black hole surrounded by a rarefied corona. The whole domain
was occupied by a magnetic field which was uniform at infinity (Wald,
1974) and aligned with the rotational axis of the disk. They used the
3+1 equations of RMHD adopted to the Schwarzschild coordinates of
the hole’s spacetime, which introduces a strong coordinate singularity
at the event horizon, thus making the problem of finding accurate
solutions near the horizon quite challenging. They described their nu-
merical scheme as a Lax–Wendroff type scheme with artificial diffusion
and did not say if any measures have been taken to preserve the
magnetic field divergence-free. The axisymmetric computational grid
had 217 × 71 points with the radial extension of the computational
domain [1.1𝑟𝑠, 20𝑟𝑠], where 𝑟𝑠 = 2𝐺𝑀∕𝑐2 is the Schwarzschild radius.
The simulations were carried out on SX-4 supercomputers. The imposed
magnetic field was strong enough to cause rapid loss of the angular
momentum by the inner parts of the disk, the collapse of its centrifugal
support and subsequent supersonic accretion. Somehow this catas-
trophic accretion was halted at about 𝑟 = 1.5𝑟𝑠 with a quasi-stationary
shock forming around 𝑟 = 2𝑟𝑠. A similar phenomena was observed in
their test simulations of an non-magnetized sub-Keplerian disk whose
initial angular velocity was twenty percent below the Keplerian one.
They attributed this halting of accretion to the centrifugal barrier effect.
However, it is easy to verify that for such a disk the angular momentum
is far too low and its inner part with 𝑟 up to ≈ 8𝑟𝑠 should collapse into
the black hole without encountering the barrier. Komissarov (2001b)

reported that this was exactly what they observed during their attempt
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to reproduce this result while testing their own GRMHD code. In spite
of this controversy, the results of Koide et al. were encouraging as they
included the development of a magnetically driven jet similar to the one
observed in the earlier Newtonian simulations by Uchida and Shibata
(1985).

The first known to us attempt to simulate the magnetic jet produc-
tion in the context of magnetically driven accretion onto a rotating
black hole was reported in 1999 by one of us at a conference on
numerical methods. A brief description of this work was published only
in the proceedings of this conference (Komissarov, 2001b) and has not
been noticed by the astrophysical community. Yet, these simulations
revealed a number of key features which were rediscovered later
in more advanced studies and deserve mentioning here. The initial
configuration described a marginally bound polytropic (�̂� = 4∕3) fat
disk (Abramowicz et al., 1978) surrounded by a tenuous corona at rest
relative to local zero-angular-momentum observers. The whole domain
was threaded by a purely poloidal magnetic field. The disk interior
was dominated by the gas pressure, with 𝛽𝑚𝑎𝑥 = 100, whereas its outer
layers and corona were magnetically dominated. The simulations were
axisymmetric and used Boyer–Lindquist coordinates. The numerical
grid was non-uniform with computational cells of approximately equal
sizes in the 𝑟 and 𝜃 directions. The domain extended in the radial
direction from 𝑟 = 1.1𝑟+ to approximately 150𝐺𝑀∕𝑐2. The numeric
code was a generalization of the special relativistic code described
in Komissarov (1999a). The simulations were rather short and termi-
nated at 𝑡 = 800𝐺𝑀∕𝑐3. Only two models were presented, one for a
non-rotating black hole and one for a rapidly rotating black hole with
𝑎 = 0.9. In both cases, the magnetic torque was sufficient to initiate
disk accretion and a relatively fast outflow with 𝑣 ≈ 0.4𝑐 from the outer
layers of the inner disk. In the non-rotating case, the highly magnetized
funnel region near the symmetry axis developed fast accretion, with
speed reaching 𝑣 = 0.9𝑐 near the inner boundary. In the rotating case,
he inner part of the funnel region was still exhibiting an inflow but
he outer part developed an outflow, with velocity reaching 0.8𝑐. This
ouble-wind flow of the funnel was linked to the Blandford–Znajek
echanism of extracting the rotational energy of black holes (Blandford

nd Znajek, 1977). The simulations also allowed to identify a number
f computational problems, which prevented the author from writing
proper paper to an astrophysical journal. Firstly, the flow through

he inner boundary was not sufficiently fast to fully justify the use
f the inflow boundary conditions at the inner boundary. Attempts
o place the inner boundary closer to the horizon were unsuccessful
ue to the increased computational errors driven by the proximity
o the coordinate singularity at the horizon. Secondly, over time the
unnel flow developed very low density leading to eventual crashing
f the simulations. All these issues raised doubts whether the claim of
etection of the BZ process had a sufficiently firm basis.

. Childhood

.1. Blandford–Znajek mechanism and launching of relativistic jets from
lack holes

After the seminal theoretical work by Blandford and Znajek (1977),
heir electromagnetic mechanism of extracting the rotational energy of
lack holes was considered as one of the most interesting possibilities
or powering the relativistic jets from AGN. The original theory was
ased on two asymptotic steady-state solutions of the force-free degen-
rate electrodynamics (FFDE) obtained in the limit of slow rotation. In
his theoretical framework the inertia of plasma particles is completely
gnored but their electric charges are accounted for in the same way
s in a perfectly conducting medium. Due to the vanishing inertia,
he electric and magnetic components of the Lorentz force completely
alance each other, which explains why the system is called force-
ree. In the BZ solutions, this exotic model yields constant flux of the
6

lectromagnetic energy all the way from the event horizon to infinity,
which is rather perplexing as the event horizon is causally disconnected
from the outside world and any signal produced at the horizon cannot
escape it. Hence in contrast to the surface of a neutron star, the horizon
cannot play the role of a unipolar inductor. This property was at the
core of the critic of the BZ mechanism by Punsly and Coroniti (1990).
They argued that the steady-state solutions of Blandford and Znajek
are lacking causal connectivity and cannot be sustainable in the time-
dependent framework — in mathematical terms they must be globally
unstable.

Punsly and Coroniti (1990) also proposed an attractive alternative
where the inertia of plasma particles was paramount. In brief, the
plasma is forced to rotate within the black hole ergosphere in the
same sense as the black hole due to extreme case of the inertial frame
dragging effect in this region. Because of the magnetic flux freezing
of ideal MHD, the magnetic field is also dragged into the rotation.
Hence in this picture it is the ergospheric plasma that plays the role
of the unipolar inductor. This explanation seems rather odd as the
plasma can be very rarefied, which suggests very low inertia. To this
question Punsly and Coroniti had a very elegant answer. The magnetic
field, they said, resists being dragged into the rotation around the black
hole and pushes the plasma particles into the orbits with the slowest
rotation possible. In the frame of local fiducial observers, who can
be described as non-rotating with respect to the rotating space of the
Boyer–Lindquist 3+1 spacetime splitting, such plasma rotates in the
opposite sense to the black hole with almost the speed of light and
hence has very high inertia. Moreover, it has negative redshifted energy
(or ‘‘energy at infinity’’) and when it is swallowed by the black hole the
hole’s total mass-energy is reduced. Thus, the stationary total outflow
of the redshifted energy starts near the horizon in the form of matter-
dominated inflow of plasma with negative redshifted energy and ends
in the form of magnetically-dominated outflow with positive redshifted
energy outside of the ergosphere. The obvious analogy of this picture
with the mechanical Penrose mechanism of extracting the rotational
energy of black holes is the reason why it is often referred to as the
‘‘MHD-Penrose mechanism’’. One obvious drawback of this otherwise
elegant theory was the lack of supporting analytic solutions. This meant
that numerical experimentation was the only way of resolving this
controversy.

In order to study the stability of the Blandford–Znajek solutions
one has to work with the time-dependent formulation of FFDE. It
turns out that its equations can be considered as a zero-inertia limit
of relativistic MHD (Komissarov, 2002), which means that relatively
straightforward modifications of a GRMHD code can turn it into a FFDE
code. In order to have a clean numerical black hole experiment with
low computational errors all the way down to the event horizon, one
has to remove its coordinate singularity and hence not use the popular
Boyer–Lindquist 3+1 splitting of the black hole spacetime. Fortunately,
there are other ways to split the spacetime which do not introduce such
a singularity and are yet asymptotically identical to the BL splitting at
large distances. The first FFDE black hole experiments by Komissarov
(2001a) were focused on the case of monopole magnetosphere, the
simplest of the two cases considered by Blandford and Znajek (1977).
The initial solution described a non-rotating radial magnetic field orig-
inating from the black hole. This field was winded in the azimuthal
direction in order to ensure that the perfect conductivity condition
is satisfied inside the ergosphere. The Kerr–Schild spacetime splitting
allowed to put the inner boundary of the computational domain inside
the outer horizon, in the region which is causally disconnected from
the outside space, and use the radiative boundary conditions on it. As
soon as the simulations began, the magnetosphere started to rotate and
a strong spherical switch-on wave moved from the black hole into the
surrounding space. This was not a simple unwinding of the initial twist
as behind the wave the magnetic field remained twisted and rotating.
Moreover, in this region the solution quickly settled to a steady-state
with an outgoing Poynting flux. In the case of slowly rotating black

holes, the steady-state was in excellent agreement with the asymptotic
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solution of Blandford and Znajek. This proved that this solution was
asymptotically stable and hence physically meaningful. The underlying
physics of the mechanism was later clarified in Komissarov (2004a,
2009).

Even if the FFDE solution was meaningful, it was still important
to demonstrate that inclusion of particle inertia does not result in a
qualitatively different behavior. Moreover, in context of the accretion
disk simulations, the double-wind nature of the BZ-type solution in the
disk funnel naturally leads to it being drained of matter. This caused
MHD codes to crash unless the matter is artificially resupplied in situ.
Although this imitates the physical processes of particle creation as dis-
cussed in Blandford and Znajek (1977), one has to demonstrate that the
artificial injection does not corrupt the numerical jet solutions. In order
to address these issues, Komissarov (2004b), repeated the simulation of
the monopole magnetosphere but now within the GRMHD framework.
The results demonstrated that for the degree of magnetization which
can be achieved in GRMHD schemes with reasonably high resolution,
(1) the electromagnetic part of the MHD solution stays quite close to
the BZ solution; (2) within the ergosphere the plasma is not pushed into
orbits with high Lorentz factor and hence its inertia remains small, in
contrast to what is envisioned in the MHD-Penrose process; (3) the in
situ injection of matter can be done in the way that does not corrupt
the electromagnetic solution.

These results were at odds with the MHD simulations by Koide
et al. (2002), Koide (2003) who considered a different magnetic con-
figuration which describes an asymptotically uniform magnetic field
aligned with the rotational axis of the black hole, just like in Koide
et al. (1998, 1999) but without the accretion disk and using the same
numerical scheme. They claimed that the ergospheric plasma acquired
negative redshifted energy and that the rotational energy of the black
holes was extracted via the MHD-Penrose process. However, they run
their simulations only for very short time 𝑡 ≈ 13𝐺𝑀∕𝑐3. Later, these
imulations were repeated using an upwind conservative code which
tilized the horizon-singularity-free Kerr–Schild coordinates (Komis-
arov, 2005). The resolution was twice as high and the simulations run
ntil 𝑡 = 60𝐺𝑀∕𝑐3. Their results also exhibited the development of
region inside the ergosphere where plasma had negative redshifted

nergy but only during the transient initial phase. During this phase
ome of the magnetic field lines crossing the ergosphere did not cross
he outer horizon but had a turning point in the equatorial plane and
he negative redshifted energy was seen only around these turning
oints. Eventually, all such field lines were ‘‘accreted’’ by the black
ole. The current sheet that developed in the equatorial plane of the
rgosphere was subject to magnetic reconnection indicating that some
nteresting physics may take place there when the perfect conductivity
ondition brakes down (see Komissarov, 2004a; Parfrey et al., 2019).
owever, in accreting black holes this part of the ergosphere will be
ominated by the dense disk plasma plunging into the black hole.

Outflows driven by the BZ mechanism were also not identified in
therwise very impressive GRMHD simulations of accretion disks by
e Villiers et al. (2003, 2005) where angular momentum transport

s promoted by the turbulence arising from the magneto-rotational
nstability (MRI). Their initial configuration involved a torus with a
oloidal magnetic field aligned with the torus isodensity contours and
n unmagnetized tenuous gas around it. As the simulations progressed,
highly magnetized funnel developed in the polar region above the

lack hole where one would expect the BZ mechanism to drive a
elativistic outflow, like found earlier in Komissarov (2001b). How-
ver, inside the funnel they saw only a thermally accelerated outflow
eated ‘‘by shocks driven into the funnel by the accretion disk and
orona’’ (De Villiers et al., 2003) and concluded that a process similar
o the MHD Penrose mechanism was powering the denser outflow
t the funnel wall (De Villiers et al., 2005). Their computer code
as neither conservative nor fully upwind and relied on the artificial
iscosity method to deal with weak solutions. They also used the Boyer–
7

indquist splitting of the spacetime, with its horizon singularity. These
could be the reasons behind the failure to capture the BZ-powered
outflow.

Later, simulations with a very similar setup to those of De Villiers
et al. (2003) were carried out by McKinney and Gammie (2004a),
using an upwind shock-capturing code HARM which utilized the Kerr–
Schild splitting of the black hole spacetime. In this computational
experiment, it was possible to firmly identify the BZ mechanism as
the process powering the highly-magnetized funnel outflow. This paper
marks a turning point from a period of uncertainty and controversy to
a period of wide acceptance that the Blandford–Znajek mechanism can
be captured in GRMHD simulations of the black holes and that it does
naturally drive highly-magnetized collimated outflows in the context
of disk accretion onto rotating black holes. From this point onward,
the computational studies of the BZ process have been focused mainly
on the question of how much magnetic flux can be accumulated in
the black magnetosphere and hence how powerful the black hole jets
can be. Recalling the energy extraction due to Blandford and Znajek,
𝑃BZ ∝ 𝛷2

BH𝑎
2 which is valid in the low spin regime (see Tchekhovskoy

et al., 2010a for more general expressions), the jet power depends
critically on the amount of magnetic flux threading the horizon 𝛷BH.
The latest results suggest that the maximum magnetic flux is reached
when its magnetic pressure is approximately balanced by ram-pressure
of the accretion flow (Tchekhovskoy et al., 2011; McKinney et al.,
2012). Appropriately normalizing the flux by the accretion rate 𝜙2

BH =
𝛷2

BH∕�̇�𝑟2g𝑐 numerical studies have found a saturation value of 𝜙BH ∼
30 − −60 which depends mostly on black hole spin and somewhat on
the scale-height of the disk, where taller disks can sustain larger fluxes
on the black hole horizon (Tchekhovskoy et al., 2012). In this so-called
‘‘magnetically-arrested-disk’’ regime (MAD), the BZ power of black-hole
jets is hence directly proportional to the accretion power �̇�𝑐2 but can
exceed the latter considerably, with 300% being the current maximum
achieved (McKinney et al., 2012). This super-efficiency of MADs is the
strongest evidence that energy can indeed be extracted from a rotating
black hole as envisioned by Blandford & Znajek.

3.2. Black Hole-torus simulations

The GRMHD simulations of Black Hole jets mentioned above have
been so influential in our understanding of the jet phenomenon that
they deserve a more detailed discussion. Given that jets in nature are
typically observed in states of radiatively inefficient accretion, the im-
pact of radiation is typically neglected in Black Hole-torus simulations.
In this scenario, a hydrodynamic equilibrium torus with temperatures
close to the virial one (Fishbone and Moncrief, 1976; Kozlowski et al.,
1978) is initially perturbed with a weak magnetic field of varying
topology. The magneto-rotational instability (MRI), first applied in the
context of accretion disks by Balbus and Hawley (1991) then kicks in
and provides turbulent Maxwell and Reynolds stresses, driving angu-
lar momentum transport and accretion. The fact that viscosity arises
naturally out of the MHD turbulence is one of the great virtues of the
model. After the initial excitement, the first problems with the model
started to occur: despite the turbulence in the disk, whether at all or
how powerful a jet would be launched from the black hole depended
critically on the initial conditions. Large initial vertical flux was shown
to yield the strongest jets (McKinney and Gammie, 2004b; De Villiers,
2006) and fields with smaller coherence length would produce jets
weaker by a factor of a few or only transient outflows. This memory of
the initial field configuration is largely determined by the ideal MHD
assumption which disallows a topological rearrangement of field-lines
(for example, a single magnetic field loop cannot split into two). In
computer simulations of the ideal MHD system, such rearrangement or
‘‘reconnection’’ of field lines only occurs through numerical error.

These initial studies were in axisymmetry, but the situation would
not substantially improve for full 3D simulations (Beckwith et al.,
2008). Toroidal field initial configurations producing jets were reported

by McKinney et al. (2012) but the jets were only short lived with a duty
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cycle of ∼ 2% and average power of 0.01% compared to the accretion
power. These transient jets rapidly dissipated after a distance of ∼
50 GM∕c2 and could not serve as models for powerful jets. However,
it is quite natural to assume a toroidal field configuration for accretion
flows in various contexts: orbital shear in an X-ray binary or a tidal
disruption event would predominantly amplify the toroidal magnetic
field and a purely toroidal configuration seems a natural starting point
for the simulations. Hence the problem of magnetic flux generation and
transport has become one of the key issues in understanding black hole
engines (Sikora and Begelman, 2013).

The reason for the absence of a persistent jet in McKinney et al.
(2012) and similar studies Beckwith et al. (2008) was sought in the
weak amplification of the poloidal field due to the MRI which in
addition becomes exceedingly hard to resolve with decreasing field
strength. It took simulators ten years to achieve the necessary res-
olutions and finally report self-generation of the poloidal magnetic
field due to an 𝛼-effect by Liska et al. (2020). Though the initial
magnetization of the disk was rather high (the initial uniform magnetic
pressure was set to 20% of the thermal pressure) the proof of principle
is an important milestone as it shows that strong jets, in their case
surpassing the accretion power by ∼ 140%, can emanate even from
purely toroidal initial field configurations.

With the widespread application of conservative numerical schemes
for general relativistic magnetohydrodynamics, a large consensus in the
simulation of ‘‘standard’’ Black Hole-torus simulations has emerged. In
particular, the level of agreement in a scenario leading to moderate
magnetic flux on the horizon (coined Standard And Normal Evolution
‘‘SANE’’ by Narayan et al. (2012)) has recently been assessed in a
code comparison effort led by one of the authors (Porth et al., 2019)
whereby nine independent groups performed simulations of identical
initial conditions at varying resolutions. Despite the chaotic nature of
the turbulent problem, key qualitative aspects of the accretion process
and formation of a BZ jet are recovered by all teams. On the quantita-
tive side, as soon as sufficient resolution to continuously resolve the
MRI is given, all codes agree on diagnostics like accretion rate and
dimensionless flux 𝜙BH within the turbulent fluctuations. It should be
noted that in this comparison effort, convergence was probed up to
an unprecedented level with an equivalent of 10243 zones, surpassing
previous studies by a factor of ×2.75 in linear resolution (corresponding
to 20 times more computational zones!).1 The benchmark of Porth
et al. (2019) shows the strengths and weaknesses of state-of-the-art
numerical simulations of black hole accretion and jet formation: while
the simulations are mature enough to constrain certain parameters of
the observations as performed by the Akiyama et al. (2019), large
uncertainties of ∼ 20% still exist in predictions of the jet opening
angle from simulations. In addition, full convergence of the turbulent 𝛼
stress parameter has not yet been demonstrated as the Maxwell stress
increases with numerical resolution (as opposed to local shearing box
simulations where it is found to decrease with resolution Bodo et al.,
2014; Ryan et al., 2017; Guan et al., 2009).

A second flavor of the radiatively inefficient accretion black hole-
torus system is recovered for initial conditions with large amount of
magnetic flux. If flux can be effectively transported from larger radii,
the magnetic field strength increases due to the decreasing surface area
and its accumulating pressure will ultimately halt the accretion pro-
cess, forming a MAD (Bisnovatyi-Kogan and Ruzmaikin, 1976; Narayan
et al., 2003). First simulations of this highly magnetized state were pre-
sented by Igumenshchev (2008) using a pseudo-Newtonian approach,
and GRMHD simulations followed shortly thereafter (Tchekhovskoy
et al., 2011; McKinney et al., 2012). An important finding of these
simulations is that, once a MAD regime is reached, the saturation
flux 𝛷2

BH ∝ �̇�𝑟2g𝑐 is independent of the initial flux distribution in

1 Data publicly available under http://datacommons.cyverse.org/browse/
iplant/home/shared/eht/2019/GRMHDCodeComparisonProject.
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Fig. 3. Visualization of a GRMHD simulation showing magnetically arrested disk
accretion (MAD). The top panels show logarithmic rest-frame density on slices across
the 𝑥𝑧− and 𝑥𝑦-planes. Three flux-tubes of low density have detached from the black
hole horizon and orbit along with the disk plasma (top right). In the bottom panel we
show the jet efficiency which temporarily reaches 150% of the accretion luminosity. The
vertical dashed line indicates the time of the snapshot. The simulation was performed
with BHAC (Porth et al., 2017).

the disk. How much flux a given accretion disk can hold on the
black hole depends only on its scale height which leads to a direct
relation between BZ jet power, accretion rate, black hole spin and scale
height (Tchekhovskoy et al., 2012).

Due to the strong fields present in the inner regions of MADs, the
MRI is suppressed as the fastest growing wavelength ∝ 𝑣𝑎∕𝛺 becomes
larger than the disk scale-height. Furthermore, the strong magnetic
pressure of the central field opposes accretion of matter altogether.
Axisymmetric simulations (Igumenshchev, 2008) hence show a bursty
behavior with mass first accumulating at the magnetospheric radius
and then cyclically breaking through to the black hole. The dynamics in
3D is entirely different: magnetic flux bundles are found to erupt from
the black hole due to interchange with denser disk plasma and magnetic
reconnection. Accretion then proceeds in spiral streams through islands
of strong magnetic flux. This is illustrated in Fig. 3 which also shows
the jet efficiency reaching 100% and above. As the MRI is suppressed,
what drives accretion in the MAD regime is not fully understood. The
possibilities are turbulent stresses due to Rayleigh–Taylor interchange
instabilities or large-scale Blandford & Payne-type torques (Blandford
and Payne, 1982) of the orbiting flux bundles (Marshall et al., 2018).
Overall, as MAD regimes present harder challenges to the numerical
codes, such simulations have become only quite recently accessible to
a wider community. To demonstrate to which extent the results agree
between different numerical treatments is an important outstanding
task.

3.3. Launching jets from accretion disks

In young stellar objects, jets form as a by-product of the accretion
process, giving rise to the Herbig–Haro objects (see Chapter ‘‘Jets in
Young Stellar Objects’’ of this volume). The key mechanism of jet
formation from accretion disks was described by Blandford and Payne
(1982) as a self-similar solution to the MHD equations. The first simula-
tions showing formation of jets as magnetized outflows from accretion
disks were presented twenty years later by Casse and Keppens (2002,
2004, Fig. 4). In their axisymmetric setup, a thin accretion disk is per-
meated by an hour-glass shape magnetic field configuration. Inclusion

http://datacommons.cyverse.org/browse/iplant/home/shared/eht/2019/GRMHDCodeComparisonProject
http://datacommons.cyverse.org/browse/iplant/home/shared/eht/2019/GRMHDCodeComparisonProject


New Astronomy Reviews 92 (2021) 101610S. Komissarov and O. Porth
Fig. 4. Three-dimensional impression of the final near-stationary end state reached in
the disk-jet solutions from Casse and Keppens (2004). Color levels represent a volume
rendering of plasma density, and translucent surface stands for a magnetic surface
anchored at 𝑅 = 3 in the disk. Yellow and blue lines stand for magnetic field lines
and flow streamline, respectively. Magnetic field lines are twisted by disk rotation,
which provokes mass acceleration as shown by the flow streamline that is initially
accreting towards the central object and then turns into the jet. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

of anomalous plasma resistivity characterizing unresolved turbulence in
the simulation allows for matter to cross magnetic field lines and thus
one fraction of disk-plasma accretes onto the central object and another
fraction (roughly 20% in Casse and Keppens, 2004) is diverted to the
outflow. In the ensuing near stationary state, the force-balance along
and across the magnetic field lines can be investigated, confirming the
role of hoop-stress in collimating the (Newtonian) jet. Numerical setups
in the tradition of Casse and Keppens (2002) have been extensively
studied for the role of the involved parameters: diffusivity and field
strength (e.g. Zanni et al., 2007; Tzeferacos et al., 2009; Sheikhnezami
et al., 2012), viscosity (Murphy et al., 2010) and heating (Tzeferacos
et al., 2013).

These studies have shown that the steady jet launching due to
magneto-centrifugal forces occurs for a much wider range of the disk
magnetization than previously thought based on simplified analytic cal-
culations. Self-similar solutions suggest that jets accelerating to super-
Alfvénic speeds can only be launched in disks with mid-plane magne-
tization 𝜇 = 𝐵2∕2𝑝 close to equipartition (Li, 1995; Ferreira, 1997).
Numerical simulations, relaxing key assumptions on the ‘‘cold’’ or
‘‘adiabatic’’ disk thermodynamics however have demonstrated stable
jet launching in a range of 𝜇 ≈ 0.001 − 0.3 (Tzeferacos et al., 2009;
Murphy et al., 2010; Sheikhnezami et al., 2012; Stepanovs and Fendt,
2014). Whether such disk jets can also be launched with magnetization
substantially above unity and thus potentially reach relativistic speeds
remains to be shown.

In a first study by Tzeferacos et al. (2009), higher disk-magnetizati-
ons indicated stronger mass-loading of the outflow and higher ejection-
to-accretion ratios, disfavoring generation of fast outflows with high
magnetization. Using simulations that undergo sequences of stationary
states and investigating correlations of outflow quantities with the
momentary disk magnetization, Stepanovs and Fendt (2016) however
show the opposite trend: the asymptotic outflow velocity increases
with magnetization and the mass-loading decreases. The change comes
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about as the simulations of Stepanovs and Fendt (2016) last for much
longer and thus more faithfully capture a stationary state. Despite
these advances, the generation of Poynting flux dominated outflows as
required for relativistic AGN jets remains to be demonstrated.

In the relativistic regime, the collimation and acceleration of winds
emitted from disks was first numerically studied by one of the authors
in special relativity (Porth and Fendt, 2010). As the simulations started
from a hot rotating corona above the disk (similar to previous Newto-
nian studies Ustyugova et al., 1995; Ouyed and Pudritz, 1997) and did
not include the launching of the flow near the mid-plane, the mass-
loading could not be investigated self-consistently. The main focus of
the study is the collimation of flows in the trans-relativistic regime.
It was shown that disk winds can collimate via hoop stress before
reaching the fully relativistic regime beyond the light-cylinder where
acceleration and collimation becomes inefficient (see Section 3.4).

With general relativistic resistive magnetohydrodynamic codes (e.g.
Bugli et al., 2014; Qian et al., 2017; Ripperda et al., 2019), disk-jets can
now be modeled in full general relativity and the relative contributions
of the disk and black hole jet evaluated separately (Qian et al., 2018;
Vourellis et al.). While it has been shown that the energy flux from the
disk can dominate over the black hole driven jet, so far only mildly
relativistic velocities ∼ 0.1𝑐 have been reported from the disk. Given
the large and unconstrained parameter space of plasma (anisotropic)
resistivity, disk thermodynamics, viscosity and magnetic field structure,
disk jets might still be in for a surprise though!

3.4. Acceleration and collimation

The question of whether jets are able to magnetically self-collimate
has been debated for many years, in particular in the relativistic case.
In principle, the asymptotic collimation of the inner flow lines to the
axis has been shown from theoretical considerations (Heyvaerts and
Norman, 1989, 2003; Chiueh et al., 1991; Appl and Camenzind, 1993;
Bogovalov, 1995), however it was found that the involved scales are ex-
ponentially large (Eichler, 1993; Tomimatsu, 1994; Lyubarsky, 2009).
Hence whether collimation is possible on astrophysically relevant scales
is not obvious.

That magnetic jet acceleration is tightly connected to the colli-
mation of the flow lines can be understood from an analysis of the
stationary MHD equations with very few assumptions. It turns out that
for a cold flow beyond the light-cylinder, the Lorentz factor increases
as the so-called bunching function 𝑆 = 𝐵𝑝𝑅2 decreases (where 𝐵𝑝 is
the poloidal field strength and 𝑅 the cylindrical radius) (Begelman and
Li, 1994; Bogovalov, 2001; Vlahakis and Königl, 2003; Tchekhovskoy
et al., 2009). Acceleration can hence be achieved via differential col-
limation that is obtained when the inner field-lines collimate faster
than the outer ones. More precisely, the separation 𝛥𝑅 between two
magnetic flux surfaces has to increase faster than the cylindrical radius
R, resulting in a so-called magnetic nozzle (Begelman and Li, 1994).
Hence to solve for the jet acceleration, knowledge of the jet shape is
of fundamental importance.

The collimation of the jet is governed by the Grad–Schlüter–
Schafranov (GSS) equation of the forces across the flux surfaces. The
solution to this second-order non-linear elliptic partial differential
equation is already complex in the Newtonian case. For relativistic
flows, it is further complicated by the fact that the electric field,
which is safely neglected in the Newtonian context, nearly cancels
with the collimating force from the current (Bogovalov, 2001; Vlahakis
and Königl, 2003). With the two dominating terms closely balanced,
finding accurate analytical solutions to the stationary equations is very
challenging. In fact, which terms in the trans-field equation remain
asymptotically relevant has been in question until clarification from
numerical simulations was provided. For example (Chiueh et al., 1991;
Lyubarsky and Eichler, 2001; Okamoto, 2002), omitted the centrifugal
term in their analytic calculations, while (Bogovalov, 1995; Beskin and
Malyshkin, 2000; Tomimatsu and Takahashi, 2003) instead omitted the
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poloidal curvature term. Naturally, the acceleration behavior depends
critically on the dominant terms. When the poloidal curvature force is
neglected, an efficient linear acceleration is recovered 𝛾 ≈ 𝑟∕𝑟ls (Con-
topoulos and Kazanas, 2002). However, with the poloidal curvature
dominant, the acceleration is more delicate and results in the so-called
powerlaw acceleration regime (see e.g. Romero and Vila, 2014, for a
comprehensive review).

Numerical simulations by Komissarov et al. (2007, 2009) and
Tchekhovskoy et al. (2009) played an important role to settle the ques-
tion of magnetohydrodynamic jet acceleration and self-collimation.
Unlike previous attempts who were seeking stationary solutions of the
wind- and GSS-equations (e.g. Camenzind, 1987), these authors used
the set of hyperbolic time-dependent relativistic MHD equations and
let the solution settle into a stationary state. This set of equations is
in principle much easier to handle, but to be successful two major
numerical challenges had to be overcome: 1. to accurately follow
conversion of energy into kinetic form, numerical schemes of low
dissipation are required. This problem was countered with specially
designed flow-aligned grids in elliptical coordinates. 2. As the scales
involved in the jet acceleration are extremely large, a brute force
approach covering more than six orders of magnitude stands little
chance. Thus, using the fact that most of the jet acceleration proceeds in
the super-fast magnetosonic regime, the grid can be split up into sectors
of increasing size which are consecutively advanced to a stationary
state with increasing local timesteps. This grid-extension technique
allowed for the first time to find stationary solutions of jet-acceleration
and collimation covering six to nine orders of magnitude in spatial
scales. Careful analysis of the simulations showed that relativistic jets in
AGN can be efficiently accelerated by magnetohydrodynamic processes
reaching equipartition within the parsec-scale. In application to GRBs,
MHD acceleration can provide ultra-relativistic Lorentz factors of 𝛾 ∼
100 at distances from the central engine of 1010–1012 cm, well within
the tentative distance of the prompt emission of ∼ 1013 cm as inferred
from burst variability (e.g. Piran, 2004).

While a full discussion can be found in Komissarov et al. (2009),
we here just summarize the findings of the numerical jet acceler-
ation/collimation studies. Efficient acceleration in the linear regime
requires external pressure to aid in jet collimation with 𝑝 ∝ 𝑧−𝛼 and 𝛼 <
2. For 𝛼 > 2 the flow looses causal connectivity and ballistically expands
with conical shape. The case 𝛼 = 2 is less clear, as the collimation
depends on the condition of the flow before entering the asymptotic
region, but the collimation becomes poor, 𝑧 ∝ 𝑟𝑎 with 1 < 𝑎 ≤ 2 and
acceleration is inefficient.

As discussed above, differential collimation yields MHD acceleration
for confined flows due to differential field-line bunching. At the same
time, de-collimation can also lead to a reduction of 𝑟2𝐵𝑝 and thus
provide a means to accelerate a jet. In fact, rapid de-collimation due
to loss of confining pressure is expected when a collapsar jet leaves the
remnant of the host-star. This effect was found in numerical simulations
by Tchekhovskoy et al. (2010b) and confirmed by Komissarov et al.
(2010) who coined the term rarefaction acceleration due to the con-
ceptual similarity with a 1D Riemann problem previously considered
by Aloy and Rezzolla (2006) and Mizuno et al. (2008). An illustration
of the typical collimation/acceleration studies is shown in Fig. 5 where
an ultrarelativistic jet is confined to a given boundary of varying shape.
The rarefaction acceleration is shown on the right-hand panel yielding a
substantial increase of the Lorentz-factor in particular at the boundaries
of the jet where the solution changes most dramatically.

3.5. Jet instabilities

The steady-state analytic or semi-analytic models of jets normally
have a very simple structure and are by definition ‘‘lifeless’’. They
may be useful for understanding some of the basic processes behind
the observed dynamics of real jets but often they bear little resem-
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blance with the actual natural phenomena. The problem is that the
symmetry assumptions, including the time-independence, throw away
many other processes which ultimately determine what we actually see.
For example, a steady state model of a pressure-matched cylindrical
jet in a uniform external gas may describe a flow which remains
completely unchanged along its direction of motion, whereas the real
jet exhibits a transition to a fully turbulent state. Obviously, this issue
is not restricted to astrophysical jets but to most phenomena of life and
nature.

What usually renders theoretically constructed steady-state solu-
tions almost void are instabilities or waves of growing amplitude. They
may start as small perturbations but eventually grow strong, dramati-
cally modifying the initial solution in the process. In the astrophysical
context, another potentially very important role of the instabilities is
that they may trigger strong dissipation of both the kinetic energy
of bulk motion and the magnetic energy, thus paving the way to
the production of the observed emission (see Perucho, 2019 for a
recent in-depth review). The ‘‘engines’’ of astrophysical jets appear
to be unsteady as well, contributing to the complexity of the flows
they produce. This unsteadiness may also be a result of instabilities.
Moreover, instabilities could be essential even in the very functioning
of these engines.

The instability studies usually start from the linear stability analysis,
which for a cylindrical jet deals with small perturbations of the form

𝑓 (𝑟) exp(𝑖(𝑚𝜙 + 𝑘𝑧 − 𝜔𝑡))

where 𝑚 is the azimuthal wavenumber, 𝑘 = 2𝜋∕𝜆 is the axial wavenum-
ber and 𝜔 is the angular frequency. In the so-called temporal approach,
one may fix real values of 𝑚 and 𝑘, but 𝑓 (𝑟) and complex 𝜔 are to be
found as solutions to an eigenvalue problem. In the spatial approach,
one fixes real 𝜔 and looks for the complex eigenvalue of 𝑘 instead.
Normally, these eigenvalue problems are rather complicated and have
to be solved numerically. Typically, more than one unstable solution
exists, corresponding to modes of different types. On the 𝜔−𝑘 dispersion
diagram they appear as different branches. A nice concise discussion of
the approach with clear illustrations can be found in Baty (2005).

Like their laboratory counterparts, astrophysical jets can suffer from
the Kelvin–Helmholtz instability, which is fed by the kinetic energy of
their bulk motion. In the case of jets one can distinguish ordinary or sur-
face modes whose amplitude rapidly decays away from the surface and
global body modes which occupy the whole of the jet body (Birkinshaw,
1991). The body modes appear only for supersonic jets and they are fed
via the so-called resonant reflection of sound waves off the jet surface,
where the reflected wave is stronger than the incident one (Miles, 1957;
Payne and Cohn, 1985). Their growth mechanism involves repeated
bouncing off the opposite sides of the jet, and hence relies on the causal
communication across the jet.

Naturally, the results of the stability analysis depend on the exact
structure of the steady-state solution. For a uniform jet, the most rapidly
growing global resonant mode of the KHI has the wavelength

𝜆𝐾𝐻 ≈
2𝜋𝑅𝑗𝑀𝑗

2∕3 + 𝜂1∕2
, (22)

where 𝑅𝑗 and 𝑀𝑗 are the jet radius and Mach number respectively and
𝜂 is the ratio of inertial mass-energy densities of the jet and external
gas in the laboratory frame (Hardee, 1987a,b). For a jet emerging from
a nozzle it is better to consider the spatial growth of the instability. The
corresponding e-folding length scale is

𝑙𝐾𝐻 ≈ 𝑅𝑗𝑀𝑗 . (23)

The result applies both to Newtonian and relativistic jets, provided
one uses the relativistic definitions of the Mach number (Eq. (17)) and
inertial mass density (Eq. (18)) (Hardee, 1987b; Bodo et al., 2004).

The linear phase of an instability is difficult to detect observa-
tionally as in this phase the perturbations are very small. However,
the subsequent nonlinear phase and saturation phases are no longer
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Fig. 5. Collimation/acceleration study of Komissarov et al. (2010) showing the jet Lorentz factor in color and the magnetic field lines as black contours. In the left panel, the jet
is confined by a funnel with shape 𝑧 ∝ 𝑟3∕2. In the right panel, the funnel suddenly becomes conical at 𝑧 = 7 × 104 inlet radii (mimicking the escape of the jet from the stellar
remnant in a long GRB). The unconfined jet solution rapidly expands leading to ‘‘rarefaction acceleration’’ as the separation between flux tubes increases faster than the cylindrical
radius.
described by the linearized equations and in order to study the observ-
able consequences of instabilities one has to resort to the method of
computer simulations. They show that while the surface modes lead
to the development of a turbulent boundary layer, the body modes
may result in large-scale distortions of the jet and quickly lead to its
total disruption (Bodo et al., 1994; Perucho et al., 2004, 2005). This is
particularly true when the external gas is heavier than the jet as in this
case displacing external gas takes more energy. In the relativistic case,
the jets should be classified as light or heavy based on their inertial
mass-energy density 𝜌 = 𝛾2𝑤 (see the discussion in Section 2), or one
risks arriving to confusing conclusions.

The astrophysical jets are magnetized and it looks increasingly likely
that most of them are launched via a magnetic mechanism. As far as jet
instabilities are concerned, the role of the magnetic field is two-fold. On
the one hand, the magnetic tension resists deformations along the field-
lines which may inhibit the development of non-magnetic instabilities.
The higher the curvature radius of the deformation, the stronger is the
restoring magnetic force. This explains why the magnetic inhibition is
stronger for short-wavelength modes, which can be suppressed alto-
gether (Appl and Camenzind, 1992; Ferrari, 1998). On the other hand,
new instabilities, now fed by the magnetic energy, can grow. Associated
with the 𝐉 × 𝐁 force, these are called current-driven instabilities (CDI).

Initial studies of CDI were driven by thermonuclear fusion pro-
grams. These were focused on static plasma columns separated by
a vacuum region from the container walls. A cylindrical configura-
tion of the type is found to be unstable to the modes satisfying the
Kruskal–Shafranov criterion
𝑘𝑅𝐵𝑧
𝐵𝜙

> 1 , (24)

where 𝑅 is the radius of the column. The modes are essentially standing
waves. In the jet context, the CDI modes do not propagate in the fluid
frame but are simply advected by the flow (Appl et al., 2000). In the
fluid frame, the maximum temporal growth rate is about

𝜏𝐶𝐷 ≈ 2𝜋𝑃
𝑐𝑎

, (25)

where 𝑐𝑎 is the Alfvén speed and 𝑃 = 𝑅𝐵𝑧∕𝐵𝜙 is the distance along the
jet required for one full turn of the magnetic helix, called the magnetic
pitch (Appl et al., 2000). The corresponding e-folding linear scale is

𝑙𝐶𝐷 = 2𝜋𝑃𝑀𝑎 , (26)

where 𝑀𝑎 is the Mach number with respect to the Alfvén speed. With
the relativistic definition of the Mach number, Eq. (26) can be used
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for the relativistic jets as well as for the Newtonian, provided the
pitch is treated as measured in the fluid frame. Strictly speaking, these
results apply only in the case of constant pitch across the jet and top-
hat velocity profile, whereas the steady-state equations describing the
equilibrium of a cylindrical magnetized jet allows infinitely many solu-
tions with very different radial profiles for all fluid parameters, which
explains the large number of studies concerning the linear growth of
CDI.

The fluid jets studied in laboratories or produced by rocket engines
do not last for more than a hundred radii of the jet engine nozzle. In
good agreement with the stability theory, they are destroyed by the
Kelvin–Helmholtz instability. In contrast, the jets from AGN and young
stars manage to survive for much longer. In the case of black hole
jets, the initial jet radius is about few times the gravitational radius
of the black hole, which is about 1014𝑀9 cm for a mass normalized
to a typical value 𝑀9 = 𝑀∕109𝑀⊙ of the supermassive black holes
residing in the center of AGN. In some cases, the AGN jets can be
traced up to a distance of 1 Mpc, which is about 1010 initial jet radii.
If the jet of rocket engines had such survivability, they would be able
to reach the Moon! The jets from young stars are equally impressive
in this regard. What makes them so special? If we apply the growth
rates for KHI and CDI given by Eqs. (23) and (26) replacing 𝑅𝑗 with
the jet radius at its source, the expected maximum jet length would be
much shorter compared to the observations, unless the Mach numbers
are ‘‘astronomically’’ high, reaching 𝑀 ≈ 109 in some cases.

The explanation to the apparently incredible stability of astrophysi-
cal jets seems to reside in the fact that they are not infinitely collimated
cylindrical flows but flows with measurable finite opening angle and
hence their radius increases significantly with the distance from the
source. This sideways expansion can be the indication of a decreasing
external pressure confining the jets or even its inability to confine the
jets altogether. Hardee (1987b) modeled the spacial growth of KHI in
expanding jets confined by external pressure 𝑃 ∝ 𝑧−𝑎 assuming that
the local growth rate is the same as in the cylindrical jet with the
same flow parameters. He found a significant reduction of the overall
growth. Moreover, for 𝑎 = 2 the perturbation amplitude it is no longer
an exponential function of the distance but a power law and for 𝑎 > 2
its growth quickly comes to halt. In fact, for 𝑎 > 2 initially pressure-
matched jets eventually become free-expanding as sound waves can
no longer provide causal communication across the jet (Lyubarskij,
1992; Porth and Komissarov, 2015). Thus, the predictions of Hardee’s
model seem reasonable, but the model still had to be verified somehow
and numerical simulations are the most suitable approach for this.
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Rosen and Hardee (2000) used 3D simulations to study the stability
of magnetized conical non-relativistic jets. Their results were in line
with the expectations, but the expansion rate was rather low to have
a strong effect. The results did not indicate that jet instability can be
suppressed altogether.

A number of other simulations addressed the problem of stability
of expanding jets. Since the very important kink modes are non-
axisymmetric, it is essential for such simulations to be three-
dimensional and hence computationally intense. The setup of the 3D
Newtonian simulations of Moll et al. (2008) allowed to address the
issue of stability not only in the context of jet propagation but also
in the context of jet launching. Their initial configuration included
a perfectly conducting disk (introduced via boundary conditions),
threaded by a monopole magnetic field originating from a point below
the disk. The domain was filled with constant magnetization plasma
(𝛽 = 1∕9) with pressure 𝑝 ∝ 𝑧−4, density 𝜌 ∝ 𝑧−3 and zero velocity. The
central region of the disk was set to rotate with either the Keplerian
or the solid body rotation law. As the simulation started, the central
rotator launched a magnetically-driven collimated outflow. The jets
were traced until their head reached a distance of about one thousand
times the rotator radius. In the case of the solid body rotation, the kink
mode instability seemed to being able to significantly disrupt the jet,
whereas in the Keplerian case the jet has clearly preserved its integrity,
though with noticeable structure generated near its axis. A similar setup
using a Keplerian rotation law was studied with special relativistic
high-resolution adaptive mesh refinement simulations by one of the
authors (Porth, 2013). Although the simulations were not run for a very
long time, they confirmed the stability of the jet launching region and
the high resolution allowed to identify filamentary structure in the jets
current distribution conducive to magnetic dissipation.

McKinney and Blandford (2009) used 3D relativistic MHD sim-
ulation to study the long-term stability of the jet produced in the
context of the MRI-driven accretion onto a rotating black hole. Their
initial configuration describes an equilibrium gas torus aligned with the
rotational axis of the black hole and threaded with the purely poloidal
magnetic field aligned with the isodensity surfaces of the torus. The
exterior of the torus is unmagnetized and filled with tenuous gas whose
mass density and pressure scale as 𝜌 ∝ 𝑟−3∕2 and 𝑝 ∝ 𝑟−5∕3, where
r is the radial coordinate of the Kerr–Schild coordinates (when 𝑟 is
large, it is just the distance from the black hole). The emerging jet is
approximately conical in shape. It is not destroyed by the kink mode,
as one could expect from the Kruskal–Shafranov criterion, but reaches
the outer boundary of the computational domain, located at 𝑟 = 103𝑟𝑔 ,
unscathed. Moreover, they claim that the perturbations do not grow
beyond the level introduced by the turbulent accreting flow of the
torus.

Porth and Komissarov (2015) used the 3D periodic box setup to
study the stability of expanding relativistic jets with 𝜎 ≲ 1 and
predominantly azimuthal magnetic field. Within the box, their jets had
cylindrical geometry and their expansion was promoted via a forced
decline of the external gas pressure. The temporal rate of the decline
was set to what would be seen in a reference frame moving with
relativistic speed through the atmosphere with the gas pressure 𝑝 ∝ 𝑟−𝑎.
The results showed progressively increasing reduction of the instability
growth rate with increasing value of 𝑎, leading to its almost complete
suppression for 𝑎 ≥ 2. Interestingly, the instability mostly affected the
current-carrying core, which refused to expand at the same rate as the
jet boundary. At low jet expansion rates (due to the slow decrease of
the external pressure), where the core occupied a large fraction of the
jet volume, its instability eventually disrupted the whole of the jet.
At high expansion rates, it remained confined to the deep interior of
the jet. The development of such a core in the process of magnetic jet
acceleration was predicted theoretically (Bogovalov, 1995; Beskin and
Nokhrina, 2009) and confirmed in computer simulations (Komissarov
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et al., 2009; Moll et al., 2008)
The growth rate of instabilities depends on the details of the jet
internal structure as well, with some configurations offering slower
growth rates or/and shorter range of unstable modes than others. Yet
the jet expansion provides the most robust explanation to how the
astrophysical jets manage to escape so far away from their engines
without being destroyed by the instabilities.

The issue of stability is connected with the long established division
of the extended extragalactic radio sources roughly into the two main
morphological types in the Fanaroff–Riley classification (Fanaroff and
Riley, 1974). The jets of powerful FR2 type sources remain coherent
until they reach the remote parts of the extended radio lobes (normally
tens or hundreds kpc away from the central source) where they produce
bright hot spots, usually associated with the termination shocks of su-
personic (super-fast-magnetosonic) jets. In contrast, the jets of weaker
FR1 sources seem to terminate well before reaching the outer parts of
their lobes, producing a less compact region of somewhat enhanced
emission (a warm spot). In a fraction of FR1 sources, the jets do not
look like structures inside the extended lobes at all. Instead, the lobes
appear as a broader and more amorphous continuations of the jets,
very much like the plumes produced by the initially supersonic jets
of rocket engines. This similarity motivated the early analytical and
numerical turbulent jet models of FR1 jets (Bicknell, 1984; Komissarov,
1990). Since this implies that these jets have been strongly affected by
instabilities, one has to understand what has accelerated their growth
in these jets at the high pc- or lower kpc-scales.

Falle (1991b) has shown that any initially free-expanding jet prop-
agating though a cold gas with density 𝜌 ∝ 𝑟−𝑏 (where 𝑏 < 2)
eventually inflates a cocoon (aka radio lobe) around itself and is
prevented from further expansion by the cocoon’s thermal pressure.
Moreover, the length of the quasi-cylindrical section which begins at
the reconfinement point and ends at the termination shock increases
in time (in agreement with their 2D simulations Falle, 1991b). Thus
more space is given for the instabilities to grow (see Eqs. (23) and
(26)). They argued that eventually the jet becomes turbulent, mixes
with its cocoon and slows down to subsonic speeds, and that this con-
stitutes the transition from the FR2 to the FR1 morphology. Recent 3D
hydrodynamic simulations by Massaglia and collaborators (Massaglia
et al., 2016) and MHD (Massaglia et al., 2019) simulations of non-
relativistic cylindrical jets provided the first demonstration of such a
transition. In the simulations they tried to reproduce the conditions of
X-ray coronas of massive elliptical galaxies and found that jets of lower
power (corresponding to FR1 sources) become fully turbulent and do no
longer produce a leading hot spot on the kpc scales, as observed. Fig. 6
shows an exemplary non-relativistic MHD simulation of jet propagation
targeted at reproducing FR1 type jets from their study (Massaglia et al.,
2019). In this case, the jet is swept back by a galactic wind with
𝑣 ∼ 100 km s−1 producing a wide-angle-tail morphology as observed
for example in the radio galaxy 3C 465.

The only issue with these models is that the jets are injected into the
computational domain not as freely expanding flows but as perfectly
collimated cylindrical flows with more or less arbitrary parameters.
This may seem a minor issue, however, the jet parameters after the
reconfinement point are not arbitrary but dictated by the reconfinement
process (Falle, 1991b; Komissarov and Falle, 1998). For example, the
jet Mach number after the reconfinement is determined by its initial
opening angle and the jet radius by the cocoon pressure that drives the
reconfinement. In contrast, an arbitrarily set cylindrical jet of the same
power can end up being (1) under-expanded and pinch its way through
the external gas with ease, or (2) over-expanded, in which case it gets
immediately crushed by the pressure of the cocoon it inflates. The usual
practice of setting the jet pressure equal to the undisturbed external gas
does not help as in the cylindrical jet emerging inside the cocoon after
the reconfinement, the jet pressure is matched to the cocoon pressure

which can be much higher.
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Fig. 6. Three-dimensional iso-contours of a scalar tracer distribution for a magnetohydrodynamic simulation of a wide-angle-tail FR1 jet, with plasma-𝛽 of 3, 4.8× 107 yrs after jet
injection. The size of the computational box is 12.4 × 20 × 8 kpc.
Source: From Massaglia et al. (2019).
Tchekhovskoy and Bromberg (2016) carried out relativistic 3D MHD
simulations which were similar in their setup to those by Moll et al.
(2008) but like (Massaglia et al., 2016) were aimed at the jet propaga-
tion through the X-ray coronas of giant elliptical galaxies. To this end
they introduced a perfectly conducting rotating sphere of the radius
𝑟𝑖𝑛 = 100pc. Its angular velocity was such that the light cylinder
radius 𝑟𝐿𝐶 = 1.25𝑟𝑖𝑛. The sphere was surrounded by a cold gas of
density (a) 𝜌 ∝ 𝑟−1 or (2) 𝜌 ∝ 𝑟−1 for 𝑟 < 10 kpc and 𝜌 ∝ 𝑟−2.5

for 𝑟 > 10 kpc. The configuration was steady-state as the gravity was
ignored. The whole domain was threaded with a monopole magnetic
field. Like in Moll et al. (2008), the rotation leads to a magnetically-
driven outflow. The initial relativistic magnetization parameter of the
outflow 𝜎0 = 25 and at the fast magnetosonic point the Lorentz factor of
its bulk motion is expected to be 𝛾𝑓 ≈ 𝜎1∕30 ≈ 3 (see Beskin et al., 1998).
However, in the simulations the Lorentz factor remains of the ‘‘order
unity’’ and hence the flow never becomes super-fast-magnetosonic.
Thus, the outflows generated in the simulations are not proper jets but
rather magnetic towers, which are produced in a somewhat different
geometry compared to the original model by Lynden-Bell (2003). They
are confined by the thermal pressure of the shocked external gas and
their faster expansion along the rotational axis is determined by the
high axial pressure of the z-pinch. The detailed dynamics of such
outflows is described in the earlier studies of jets in the context of GRB
research (Komissarov et al., 2007; Bromberg and Tchekhovskoy, 2016).
Although not able to capture the properties of AGN jets on kpc scales,
the study demonstrates that even if the magnetic field can inhibit the
KHI modes, the CD-instabilities take over and can disrupt the jets when
the final quasi-cylindrical section becomes sufficiently long, leading to
a qualitative change in the large scale morphology of the lobes they
inflate.

Yet another potentially disruptive jet instability is encountered in
differentially rotating two-component jets which can give rise to a
relativistic variant of the well known Rayleigh-instability of rotating
fluids. This was studied by Meliani and Keppens (2007, 2009) and
recently by Millas et al. (2017) who extended this study to magnetized
jets. While dynamically important close to the central engine, the
rotation is expected to be too weak at the kpc-scales where the AGN
jets become reconfined.

The theory of magnetically-accelerated steady-state axisymmetric
relativistic jets shows that their asymptotic magnetization remains
sufficiently high with 𝜎 ≲ 1 (Lyubarsky, 2010; Komissarov et al.,
2009). The 2D axisymmetric simulations of such jets drilling through
a uniform external medium show that they produce conspicuous nose
cones (Komissarov, 1999b). Such structures are not present in the large-
scale structure of FR2 radio sources, in apparent conflict with the
theory. However, 3D simulations of such jets (Mignone et al., 2010)
show that this structure is unstable, becomes disrupted and swept back
into the jet cocoon by the ram pressure of the external gas.

Gourgouliatos and Komissarov (2018a) studied the reconfinement
of hypersonic AGN jets by the thermal pressure of the X-ray galactic
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coronas using 3D hydrodynamic simulations. For the FR1 jets, such a
reconfinement is expected within the first few kiloparsecs and hence
still inside the dense core of the X-ray gas (Porth and Komissarov,
2015). Quite unexpectedly, they found a rapid transition to fully tur-
bulent flow right at the reconfinement point. A similar phenomenon
was seen in their simulations of the jet reconfinement by a low-
density constant-pressure external gas and in the 3D simulations of
FR2 jets by Matsumoto and Masada (2019). A closer look revealed that
the culprit was the centrifugal instability associated with the curved
streamlines of the flow downstream of the reconfinement shock (Mat-
sumoto and Masada, 2013; Gourgouliatos and Komissarov, 2018b). Its
non-linear phase is illustrated in Fig. 7.

The non-axisymmetric nature of the instability explains why it was
not seen in the earlier 2D simulations of jets undergoing reconfinement
by the external pressure. The centrifugal instability can be suppressed
by a relatively weak azimuthal magnetic field and develops only in
kinetic-energy-dominated jets (Komissarov et al., 2019), which can be
used for the physical diagnostic of jets.

Apart from advancing our understanding of the jet dynamics, these
and many other recent studies have shown that the 3D geometry is
paramount in simulations of jets, particularly when strong magnetic
fields are involved. Not only theoretical axisymmetric models but also
steady-state and time-dependent axisymmetric numerical simulations
are drastically altered by the third degree of freedom.

3.6. Jet’s impact on the parent galaxies

3.6.1. Interaction with the cooling flows
There are a number of interesting and important astrophysical

problems that are concerned not with the physics of the astrophysical
jets themselves but rather with the impact they can make on their
surroundings. One such problem involves the dynamics of hot gas in
massive elliptic galaxies and clusters of galaxies. The radiative cooling
times of the gas is shorter than their life-time and the loss of pressure
support in the central core of their distribution due to this cooling is
expected to drive a subsonic inflow towards the center of the massive
central galaxy. This cooled gas would form clouds and give birth to
young stars, making these central galaxies much bluer and brighter
than they actually are (Fabian, 1994). One possible solution to this
conundrum is heating of the accreting gas by the AGN. Since this
cooling gas may actually be the main channel of the ‘‘fuel’’ supply
to the AGN, this leads to an interesting self-regulation problem. As
the galaxies and clusters form via the same type of flows in the early
Universe, this issue gets a cosmological dimension as well.

The AGN can heat and slow down the cooling flow via an inverse-
Compton scattering of the AGN hard radiation. However, this is un-
likely to be the case as the optical depth of the cooling flows remains
below unity down to the distance 𝑟 = 100pc from the AGN (Omma
et al., 2004). The second possibility is mechanical heating by the
AGN jets (or winds) and it is supported by the observations of X-ray
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Fig. 7. Development of the centrifugal instability in reconfining jets, from Gourgouliatos and Komissarov (2018a). Due to the curved-streamlines, fluid at the contact discontinuity
experiences an outwardly accelerating force giving rise to a Rayleigh–Taylor finger-like appearance of the instability (best seen in the cross-jet inset) which promotes strong mixing
with the ambient material.
‘‘cavities’’ in the central parts of galactic clusters, that are blown out
by the radio jets. The heating by jets can occur via many different
channels. First, the cooling flow can be heated by the shocks driven into
the it by the jets (or winds). Second, the jets can push the central dense
and cooler gas of the cooling flow out, where it will mix with hotter
parts of the flow. Third, the gas of the cooling flow can turbulently
mix with the extremely hot gas of the jet cocoon. The jets can excite
the large-scale gravitational oscillations or meridional circulation of the
cooling flow, which heat the gas when their kinetic energy is dissipated.
High energy cosmic rays may also provide a substantial contribution to
the heating.

A number of studies tried to address the jet heating issue via nu-
merical simulations (Quilis et al., 2001; Reynolds et al., 2002; Brüggen
and Kaiser, 2002; Omma et al., 2004; Zanni et al., 2005; Vernaleo
and Reynolds, 2007; Cattaneo and Teyssier, 2007; Brüggen et al.,
2007, 2009; O’Neill and Jones, 2010; Perucho et al., 2011, 2014;
Weinberger et al., 2017; Ruszkowski et al., 2017). The problem is quite
challenging as it involves multi-phase gas, processes on different spatial
and time scales, radiative cooling, thermal conduction, magnetic field
and turbulence. The direct mechanical impact of the jet on the cluster
gas depends on its ability to create a thick over-pressured cocoon,
which drives strong shocks into the surrounding gas, thus displacing
it not only in the jet direction but also perpendicular to it. In the
numerical simulations, this strongly depends on the simulation setup.
For example, if one sets up a perfectly collimated supersonic jet of a
given thrust, then its initial advance speed is determined not only by
the density of the external gas but also by the initial jet radius. Set the
radius too small and the jet will pinch through the gas like a needle,
only weakly disturbing it. Set it too large and the jet will be crushed
by the pressure of its own cocoon, resulting in a hot bubble driving a
quasi-spherical shock through the external gas. In the case of AGN jets,
their radius at a given distance from the central engine is determined by
the interaction with their environment prior to reaching this distance.
In the cooling flow simulations, it is set rather arbitrarily and is often
dictated by the computational constraints rather than by the jet physics.

Most of the simulations thus far were Newtonian. In fact, high-speed
jets present a computational challenge as the Courant–Friedrichs–Lewy
stability condition sets a small time step. Combined with the large
global time-scale of the problem this implies an uncomfortably long
CPU time. For this reason, the jet speed is usually set to a value which
is significantly below the speed of light. This however, reduces the jet
ability to inflate an extensive cocoon by the effective decrease of the
cocoon pressure relative to the ram pressure of the jet. For example,
by setting the jet speed to 104 km/s, the thermal energy supplied by
the jet to the cocoon of a given length is reduced compared to the
relativistic jet of the same thrust by the factor of sixty (see Eq. (20)),
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implying almost eight times smaller cocoon radius. This may explain
why in many such simulations the large-scale effect of the jet is limited
to a sufficiently narrow region near the jet axis (e.g. Vernaleo and
Reynolds, 2006; Martizzi et al., 2019). As a way out of this problem, a
very wide-opening-angle AGN outflows (e.g. more like winds than the
collimated radio jets, e.g. Prasad et al., 2015; Hillel and Soker, 2017)
and wobbly or precessing jets were considered (e.g. Heinz et al., 2006;
Gaspari et al., 2012; Bourne and Sijacki, 2017; Martizzi et al., 2019).
In both cases, the idea is to spread the jet thrust over larger area and
hence to reduce the advance speed of its head. This leads to a more
rounded cocoon and a more isotropic heating of the cluster gas. The
recent experiments with relativistic jets have confirmed that they are
significantly more efficient heaters of the cluster gas by means of the
cocoon driven shocks (Perucho et al., 2011, 2014).

In order to study the long term effects, the simulations have to be
optimized by reducing the numerical resolution down to only several
cells across the jet radius. Such a low resolution means that the jet
dynamics cannot be reproduced adequately and this is likely to have
severe implications for the problem of its cocoon interaction with the
cooling flow. This is because the advance speed of the cocoon in the jet
direction depends on the area over which the jet thrust is spread out
near the jet head. This spreading is dictated by jet interaction with the
cocoon, via the reconfinement shock, jet instabilities leading to the jet
wobbling (the so-called ‘‘dentist drill’’ behavior) etc. Summarizing, we
agree with the conclusion made by Martizzi et al. (2019) that although
the simulations have provided useful guidelines to the problem, no firm
conclusions of the efficiency of the jet heating of the cooling flows can
be drawn at the moment.

3.6.2. Interaction with clumpy ISM
While in the local Universe the gas component of the host elliptical

galaxies is dominated by a rather tenuous and hot X-ray emitting
component, at high redshift there is more gas and a significant fraction
of it is in the form of warm and cold clouds. The parent galaxies of low
redshift radio sources can also get a significant optical-line-emitting
gas component via a relatively recent merger with a gas-rich galaxy.
Moreover, such clouds are a natural product of cooling flows.

Massive clouds can present a formidable obstacle for newly born
jets. Their interaction with such clouds can be highly disruptive for the
jet, promoting rapid release of its energy relatively close to the AGN.
The released energy can have a strong effect on the ISM of the parent
galaxy by removing the hot component and dispersing some clouds,
thus temporarily suppressing the star formation. On the other hand the
increased surrounding pressure may trigger gravitational collapse of the
clouds, thus promoting the star formation.
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Fig. 8. Three-dimensional relativistic hydrodynamic simulations of AGN jets interacting with the ISM of a forming galaxy from Wagner et al. (2016). (a) Volume rendering at
various angles of the jet (blue) and the dispersed clouds in orange. (b) Volume render of the jet plasma (central column), and projections of mid-plane slices of various physical
quantities to the box faces. Back-left: kinetic energy of clouds, back-right: velocity map, bottom-left: thermal pressure map, bottom-right: temperature map. (c) Mid-plane slices
of the density showing the evolution of the jet through the two-phase ISM. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
The first computer simulations of the jet interaction with the ISM
clouds were carried out in slab geometry (e.g. Bicknell et al., 2003;
Antonuccio-Delogu and Silk, 2008). Although this geometry has some
advantages compared to the axisymmetry and allows to study some
aspects of the jet-cloud interaction, the problem is inherently three-
dimensional. The first 3D hydrodynamic simulations of the type carried
out by Sutherland and Bicknell (2007) were focused on the physics of
the young jets associated with compact steep spectrum sources (CSS).
The initial distribution of warm (104 K) clouds was modeled as an
almost Keplerian disk of ≈ 400pc radius and ≈ 100pc scale height.
Their distribution was generated using a sophisticated statistical model
adopted from the theory of turbulence, with the maximum size of the
generated clouds of 25pc. The space between the clouds was filled with
hot gas of temperature 107 K. The simulations were run on a 5123 grid
with a 2 pc cell size using a Newtonian code. The jet was injected
from a nozzle of 20pc radius as a perfectly collimated cylindrical flow
and was pressure-matched to the ISM. Its parameters were chosen to
emulate a relativistic jet with Lorentz factor 𝛾 = 5 and kinetic power
of 3×1043 erg s−1, using the prescription given in Komissarov and Falle
(1996). The simulations revealed four phases of the interaction with
ISM, which persisted in later more advanced experiments. In the ‘‘flood
and channel phase’’, the jet makes its initial advance though the disk,
entraining and destroying clouds that happen to be on its way and
getting more and more disrupted in the process. In the ‘‘bubble phase’’,
the stifled jet inflates a quasi-spherical high-temperature and high-
pressure bubble that grows in size faster than the jet and eventually
engulfs the whole disk of clouds. This bubble is the same as the jet
cocoon but it is heavily loaded with the entrained ISM material. It
drives a strong bow shock that removes the hot component of ISM and a
strong conical shock into the low pressure jet. During the ‘‘jet-breakout
phase’’, the jet clears its path through the disk of clouds and begins to
flow freely through it. Its head eventually catches up with the shock
bubble. In the final ‘‘classic phase’’, the jet develops the large scale
structure typical for jets propagating through a smooth non-clumpy
environment, with its leading termination shock and backflow. Like in
all other simulations where a perfectly collimated jet of a given radius is
injected into the computational domain, here the results are inevitably
influenced by the choice of this initial jet radius. In reality, the geom-
etry of an AGN jet, including its radius at a given distance is strongly
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influenced by the conditions in its environment. For the problem at
hand, these conditions are set by the violent interaction of the jet with
ISM and hence the jet radius is subject to a complicated non-linear
self-regulating process. Moreover, even assuming the relatively large
jet half-opening angle 𝜃𝑗 = 0.1, the distance from the AGN where the
jet radius reaches the value of 20pc, which is set as the initial radius
in the simulations, is about 200pc – well outside of the disk.

Later, a very similar study was carried out by Gaibler et al. (2011)
but now with focus on the gas-rich high redshift galaxies. So their
disk of clouds had the radial and vertical scales of 5 kpc and 1.5 kpc
respectively. Its total mass was 1.5 × 1011𝑀⊙. They used a Newtonian
code with adaptive mesh (AMR) allowing the minimum cell size of 63pc
and the effective grid of 20483 cells. A bipolar perfectly collimated jet
was released via a virtual orifice of 400pc radius located in the center
of the disk and aligned with the disk axis. The jet speed and power were
set to 0.8 c and 5.5 × 1045erg s−1 respectively. The evolution proceeded
through the same phases as in Sutherland and Bicknell (2007) but with
somewhat different timing for the two disk hemispheres due to lack
of the reflection symmetry in the statistical realization of the cloud
distribution. As a result, the large-scale structure produced by the jets
was highly asymmetric. Later, the simulations were augmented with
a subgrid model of star formation in order to understand whether the
jet impact leads to its inhibition or promotion (Gaibler et al., 2012).
It was found that up to 1010𝑀⊙ of additionally formed new stars can
be produced in one cycle of AGN activity. The main region of the star
formation was located in a ring shaped volume of the disk surrounding
the central ‘‘hole’’ made in the disk by the jet.

The study was continued by Wagner and Bicknell (2011), Wagner
et al. (2012) using a relativistic code. They build a suite of 29 numerical
experiments, aimed to explore the dependence of AGN feedback effi-
ciency of the jet and ISM parameters. The warm clouds were distributed
uniformly within a sphere of the 0.5 kpc radius. The computational
domain had a size of 1 kpc3 with the center of the cloud distribution
(and the jet inlet) placed in the middle of one of its faces. The AMR grid
had the effective resolution of 5123 or 10243, with the minimum cell size
of 1 or 2pc. The initial jet radius was 20pc and the maximum cloud
radii varied from 10 to 50 parsec depending on the run. The results of
these and some previous simulations were also summarized in Wagner
et al. (2016) and we reproduce one of their figures in Fig. 8. They
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show that in the bubble phase the bubble-driven shock sweeps away
the hot-phase gas but disturbs the clouds only slightly. However the
clouds are strongly effected by the fast streams of shocked jet plasma
escaping from the high pressure impact sites in the jet through the
space between the clouds in all directions. The speed of the streams
could be as high as c/3 and provided sufficient ram pressure to expel
the clouds from the jet surrounding. In the process, the clouds were
mechanically ablated by the streams. The smaller clouds were predom-
inantly dispersed and ablated whereas the larger clouds survived and
were found more susceptible to the collapse induced by the increased
pressure inside the bubble. The critical size is found to be about 25pc.
The overall outcome of the jet feedback was found to be sensitive to
the geometry of the clouds distribution. For a disk-like distribution, the
destructive role of the jet was limited and the star-formation rate could
be significantly increased. For a spherical distribution, the jet would
be stuck inside it for longer and the streams of the shocked jet plasma
had more time to ablate, disperse and accelerate the clouds. Obviously,
the jet effectiveness in destroying the clouds and suppressing the star
formation depended on the jet kinetic power, which was quantified in
terms of the parameter 𝜂 = 𝐿𝑗𝑒𝑡∕𝐿𝑒𝑑𝑑 . The critical value was estimated
at 𝜂𝑐𝑟 ≈ 10−4.

These simulations look very impressive, producing complex struc-
tures which have the sweet flavor of reality about them. However,
the clouds are not well resolved and the process of their mechani-
cal ablation and destruction is definitely not captured properly. The
Rayleigh–Tailor and Kelvin–Helmholtz instabilities should create tur-
bulent mixing layers between the clouds and the surrounding flow of
the shocked jet plasma which determine the rates of mixing, heating
and mass-loading. Such layers are not captured and the rates seen in
the simulations are dictated by the diffusion properties of the utilized
numerical schemes rather than by the actual physics of the interac-
tion (Pittard et al., 2009). Just like in the case of jet interactions with
cooling flows, the current state-of-art simulations of the AGN feedback
via radio jets provide useful guidelines but do not allow to draw firm
conclusions yet.

4. Coming of age

As an area of research, the computer simulations of jets are entering
a new phase, which may be described as maturity.

For a long time, this type of research required very high coding skills
as the researcher would have to be able to make significant changes to
the available code, if not writing it from scratch. Most ‘‘home-made’’
codes were not particularly user-friendly as the developers did not
think that their codes would be modified by someone but themselves
and their close collaborators. Specialist knowledge of computers and
their infrastructure was also required. The researchers had to be highly
proficient in the numerical methods too. Once all these prerequisites
were met, there was also the little issue of becoming an expert in
astrophysics as well.

With the advance of publicly available codes like Athena(++)
(Stone et al., 2020), FLASH (Fryxell et al., 2000), Pluto (Mignone
et al., 2007), Ramses (Teyssier, 2002) or MPI-AMRVAC, co-developed
by one of the authors (Keppens et al., 2012; Porth et al., 2014; Xia
et al., 2018) (and its general relativistic framework BHAC (Porth et al.,
2017)), the situation has changed. Although a basic understanding of
the algorithms is still required, the demand to be proficient in all the
nitty-gritty of the simulations has subsided. This is just like driving
a car does not require much knowledge of how its engine works. A
much wider scientific community can now run computer simulations
and research students are routinely trained in this regard. This and
the availability of quite powerful supercomputers in even second-tier
research centers (unthinkable even twenty years ago) are the two
main reasons why the computer simulations in astrophysics in general
and in the physics of astrophysical jets in particular are entering a
qualitatively different new phase.
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As we have discussed here, a number of fundamental questions
in the jet dynamics appear to have been resolved via a combination
of theoretical analysis and computer simulations during the last two
decades. There are however other issues where the progress has been
rather slow and its acceleration will require significant efforts.

One key unsolved issue of relativistic jets is the nature of their
composition (e.g. the recent review by Blandford et al., 2019). At first
sight, it seems surprising that given the wealth of detail recovered
by modern computer simulations, the question whether an AGN jet is
primarily composed of lepton pairs or hadrons (baryons and mesons)
could not yet conclusively be answered. This comes about as within
the single-fluid model, the plasma composition does not influence
the dynamics, only the emission properties. Since hadronic emission
is generally less radiatively efficient, the models of hadronic high-
energy emission require (unrealistically) high jet energies if they are
to match the double-humped spectral energy distribution. Observations
of neutrino emission from blazar sources such as TXS 506+056 as
indicated by the IceCube experiment (Aartsen et al., 2018) however
require at least some hadronic component to be present in the jet. This
issue is coined the ‘‘energy crisis’’ of AGN jets (Sikora et al., 2009;
Zdziarski and Bottcher, 2015; Liodakis and Petropoulou, 2020).

Whether the baryonic matter is part of the jet from the start or
whether it is ‘‘mixed’’ in via a range of fluid instabilities is not yet clear.
Numerical simulations of mixing and entrainment (e.g. Walg et al.;
Chatterjee et al., 2019) will play a part in modeling the ‘‘loading’’ of
jets, hopefully leading to a resolution of the jet composition issue.

Another major issue in understanding astrophysical jets concerns
the origin of non-thermal emission. The fluid description employed
in state-of-the-art studies provides only the integral characteristics of
plasma, such as the total number density of particles, their mean energy
and the magnetic field strength. This is not sufficient for the emission
calculations which require the energy–momentum distribution of the
non-thermal component. Hence to address the jet emission, we need to
go beyond the fluid description.

One may introduce the spectrum of the non-thermal component in
a parametric form with few parameters whose evolution is tied to the
background fluid flow. In the crudest example, one can assume that the
non-thermal energy spectrum is a power law with given power index
and energy range and demand that the non-thermal energy density
is a fixed fraction of the internal energy density of the fluid model.
However, this is just a fancy way of visualizing the fluid solution (see
e.g. the attempts by one of the authors Porth et al., 2011), whereas a
proper model should address the issues of the acceleration, transport
and radiation losses with some rigor.

Several schemes for particle transport, heating and acceleration in
jets have been introduced in recent years, either based on Lagrangian
tracer particles or on additional fluid tracers (Ressler et al., 2015;
Chael et al., 2017; Vaidya et al., 2018; Ohmura et al., 2020). The most
difficult mechanism to account for is particle acceleration, which can
occur at shocks, at sites of magnetic reconnection and in regions of
developed turbulence. Shock acceleration has traditionally been the
most popular mechanism, however the recent studies show that in
relativistic plasma it is not an efficient mechanism. At least, it is not
captured in the dedicated PIC-simulations of relativistic magnetized
shocks. This is in contrast to relativistic magnetic reconnection, where
the PIC simulations find that the non-thermal particle acceleration is
very efficient.

The main problem is that the particle acceleration is a microphys-
ical process which occurs on much smaller scales than the jet flow,
unless we are interested only in the ultra-high energy particles with
macroscopic Larmor radius. Collimated particle beams can be studied
using the PIC approach (e.g. Nishikawa et al., 2016; Alves et al., 2018,
2019) but when the structures emerging in such studies are driven by
the kinetic processes, we are dealing with scales that are much smaller
than what is resolved in astronomical observations of jets.
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We can see two ways of how the particle acceleration can be
incorporated into the fluid models of jets. One is the development of
hybrid fluid–kinetic codes, where most of the jet dynamics is described
using the fluid model and in few sites of special interest it is done
via the kinetic model (likely using the PIC methodology). The fluid
model has to be complemented with the facilities responsible for the
transport of non-thermal particles, which describes how the particle
spectrum evolves while been transported by the flow from one ac-
celeration site to another. For this approach to work, there have to
be a small number of acceleration sites as they would have to be
treated with very high numerical resolution. In the context of solar-
and space-physics, two-way fluid–kinetic couplings have already been
demonstrated successfully (Daldorff et al., 2014; Makwana et al., 2017).
These hybrid schemes are now applied to global scenarios where PIC
domains focus on the current-sheets arising in sun–planet (Chen et al.)
or planet–moon magnetospheric interactions (Tóth et al., 2016).

The second approach is the development of subgrid models of
particle acceleration. For this to work, the particle acceleration has to
be well understood and reduced to reasonably accurate and sufficiently
simple analytic or at least semi-analytic representations. As far as the
magnetic reconnection is concerned, we have not yet reached this stage,
although first tentative steps into this direction have been made (e.g.
Ball et al., 2018; Davelaar et al., 2019).

Another issue is related to the fact that the available RMHD codes
cannot handle the high magnetization regime where 𝜎 ≫ 1 and the
RMHD equations become ‘‘stiff’’. As in this regime the plasma contri-
butions to the total mass-energy and momentum are small and hence
increasingly sensitive to the numerical errors, high accuracy and hence
numerical resolution is needed even in smooth regions just to avoid the
code crashing. As we have discussed earlier, such highly magnetized
regions naturally develop near black holes due to the double-wind
structure of flows powered by the Blandford–Znajek mechanism (simi-
larly, high magnetization is expected in the magnetospheres of neutron
stars). In the simulations, these regions are handled via artificial mass
injection, which prevents otherwise inevitable code crash. On the other
hand, the moderate bulk-motion Lorentz factors of AGN jets indicate
the operation of some efficient physical process of mass-loading. Iden-
tification and studying of this process in future computer simulations
require codes that can handle the high magnetization regime, perhaps
by coupling to the set of force-free equations where appropriate (e.g.
Lehner et al., 2012; Paschalidis and Shapiro, 2013).

4.1. Computing aspects

It has become quite clear that a comprehensive representation of the
astrophysical jet dynamics and the jet interaction with its surrounding
requires 3D simulations. The computational cost of explicit 3D integra-
tion (e.g. the CPU time) grows at least as 𝑛4, where 𝑛 is the number
of grid-points in one direction. This is a very steep rise indeed. For
example, if we need to increase the resolution by a factor of two and
still complete the simulation within the same, usually already quite a
long time, the number of processor cores would have to be increased
a factor of sixteen. This means a much better and hence a much more
expensive computer facility. So far the power of supercomputers was
growing very fast, doubling every two years (the so-called Moore’s law),
which was mostly based on the ability to produce smaller and smaller
transistors. However, the miniaturization trend is coming to an end
as the size of the transistors is approaching the atomic scale where
the limiting quantum effects become overwhelming. Another related
problem is the increasing circuit energy loss and heating, limiting
the microprocessor clock speed. Unless a radically new technological
solution is found, the growth of available computer power will slow
down significantly already within the decade (e.g. Waldrop, 2016).

Traditionally, astrophysical and fluid-dynamical applications have
directly benefitted from developments in high-performance computing.
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This is because these applications are highly parallel and scale well
to entire compute clusters. While the mean power of supercomputers
available for astrophysical research is likely to grow faster than the
top tier clusters (because of the current gap between them and the
world leading machines), we do not expect the typical 3D simulations
to go much beyond the 10003 grid for the next decade. We can see two
trends: on the one hand, codes are more easy to handle for the user
and faster general purpose clusters will become available to the astro
community. This would allow more people to do simulations of the
10003 resolutions class. At the same time, to keep up with the growing
demand on performance (with new compute-hungry applications such
as machine learning entering the arena), engineers are forced to add
more hierarchy, use accelerators like GPUs, and try to squeeze out
performance on the lowest abstraction level as in vectorization (see for
example the ARM Scalable Vector Extensions). Programming close to
the particular hardware will be required for the physicist who wants to
optimally benefit from the alluring performance gains that zetta-scale
promises (a zetta-scale supercomputer performs 1021 floating point
operations per second, three orders of magnitude more than what is
within reach at the time of writing of this review). Hence once again,
specialist knowledge will be required and it might be too much to bear
for the astrophysical community alone. Fruitful collaboration between
performance engineers and astrophysicists will be essential to bring
numerical simulations of astrophysical phenomena to the next level.

Though even when fully harnessing zetta-scale which might become
available in the late 2030s (see Liao et al., 2018, for a performance
engineering perspective), the 𝑛4 complexity means that going from exa-
to zetta-scale by brute force would only yield an increase of linear
resolution by a factor of less than six. This obviously puts not much
of a dent in some very challenging global problems, for example the
launching and afterglow of GRBs which are separated by ten orders or
magnitude. The increased dynamic range however does allow to more
carefully investigate convergence and increase the confidence of the
numerical solutions.

Adaptive meshes may improve local resolution, but only if the
volume covered by the finest mesh is only a small fraction of the com-
putational domain. We are somewhat skeptical that novel algorithms
for fluid dynamics will suddenly emerge and change the game as was
the case with the invention of conservative shock-capturing schemes
by Godunov (1959). For example, the methods being employed in
production codes today are all based on schemes developed in the
1960s/1970s, with the discontinuous Galerkin methods being the most
recent development dating back to 1973 (Reed and Hill, 1973).

The current hardware developments such as GPUs and manycore
(vectorized) processors mean that there is an abundance of compute
capability but limited memory bandwidth. This trend has increased
over the years meaning that there is some pressure to ‘‘do more with the
data’’, as in higher-order accurate methods (e.g. Felker and Stone, 2018;
Most et al., 2019). In particular as the energy scales can be strongly
disparate in jets (for example in regions of high magnetization, see
above), high accuracy is required even in otherwise smooth parts of
the jet flow (Tchekhovskoy et al., 2007). Transitioning from second- to
fourth-order accurate schemes might hence be the most immediate way
to improve simulations of astrophysical jets.

The limitations imposed by the computational facilities are likely
to change the practice of computer simulations in several respects. The
focus may switch from the direct simulations of large-scale problems
which leave the local dynamics under-resolved, to high-resolution stud-
ies of the local processes. Clever algorithms where a lot of physics is
included on the subgrid level may become much more widely used on
the global scale.

When planning this review we opted to avoid simply listing relevant
papers and decided to give more in-depth analysis of the progress
achieved in a few important directions instead. The selection of papers
inevitably reflects our subjective views and personal research interests.
As a result, the review is not comprehensive and we issue our unre-
served apology to the authors whose contributions have not made it

into our bibliography.
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We believe this review shows that the numerical studies of rel-
ativistic jets have grown up and matured: starting with first careful
steps in the 1970s where the cocoon and bow-shock structure was
established, over the childhood years marked by controversies over
the Blandford–Znajek mechanism and relativistic jet self-collimation in
the 1990s–2000s into the current era of large scale 3D simulations.
While we remain humbled by the wealth of physical processes sampled
by astrophysical jets, through numerical simulations we also have a
powerful tool for their study at our disposal!
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